SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Brune Jan Claas) "

Sökning: WFRF:(Brune Jan Claas)

  • Resultat 1-10 av 14
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Brune, Jan Claas (författare)
  • MESENCHYMAL STEM- AND STROMAL CELLS IN BONE MARROW AND OSTEOSARCOMA
  • 2011
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Primary mesenchymal stem cells (MSC) play a central role in bone marrow (BM) and during haematopoiesis. Yet, the exact phenotype and spatial distribution of primary MSC in the human BM are unknown. Their cultured progeny are promising candidates for clinical applications. MSC cultures however, are heterogeneous and, while critical for clinical applications, their exact composition is not known. We have therefore analysed the phenotype of primary MSC in the BM and found that mesenchymal progenitors were highly enriched in the lin-/CD271+/CD45- fraction. Interestingly, CD146 expression pertained to the in-vivo localization of primary MSC in the human bone marrow (perivascular/endosteal) while CD146 expression in-vitro was oxygen level dependent. Cultured MSC were analysed after carboxyfluorescein succinimidyl ester (CFSE) staining for cell division tracking. Sorting for slowly dividing and rapidly dividing sub-populations and global gene expression analysis yielded 102 differentially expressed genes. Two of these genes translated into proteins that enabled for the prospective identification of a VCAM+/ FMOD+ sub-population, with low progenitor activity and a limited differentiation potential. On the other hand, MSC support tumour growth and metastasis and have even been suggested as osteosarcoma (OS) stem cells. We therefore analysed MSC in OS (OS-MSC) and compared them with BM-MSC. OS samples contained very high frequencies of mesenchymal progenitor cells. OS-derived MSC (OS-MSC) did not show chromosomal aberrations, had normal MSC morphology and expressed the typical MSC surface marker profile. A global gene expression analysis yielded a set of genes differentially expressed between OS- and BM-MSC. Of these, 3 genes responsible for membrane-associated proteins were analysed: CD142, LY6H, and OSS3* were 24.9- , 7.2- , and 66.4-fold higher expressed in OS-MSC. The OSS3-protein was expressed in all analysed primary OS samples and only OSS3 identified the majority of mesenchymal progenitor cells in uncultured tumour samples. Taken together, we propose here a marker combination for a highly enriched primary MSC population and show that CD146 expression relates to the perivascular (versus endosteal) localization of primary human MSC. This is of importance to further studies of the haematopoietic environment. We also show the presence of sub-populations within MSC cultures and propose markers for the isolation of a functionally impaired population. This is important for safe and efficient clinical application of cultured MSC. Furthermore we could demonstrate high numbers of colony forming mesenchymal progenitors in OS, suggesting that MSC are a major constituent of the OS stroma and consequently represent a target for therapy. Finally the above data show that a sub-population of OS cells expresses OSS3 and we furthermore demonstrate that OSS 3 identifies the majority of colony forming mesenchymal progenitors within OS. Presumably, these cells are the origin of a considerable part of the CAF population within the tumour and they should therefore be considered a target for therapy. Experiments investigating the use of OSS3 antibodies in an antibody-dependent cell-mediated cytotoxicity-based approach are currently underway. *Due to a possible patent application, we were advised to substitute the original gene name with an alias.
  •  
2.
  • Brune, Jan Claas, et al. (författare)
  • Mesenchymal stromal cells from primary osteosarcoma are non-malignant and strikingly similar to their bone marrow counterparts.
  • 2011
  • Ingår i: International Journal of Cancer. - : Wiley. - 0020-7136 .- 1097-0215. ; 129, s. 319-330
  • Tidskriftsartikel (refereegranskat)abstract
    • Mesenchymal stromal cells (MSC) are multipotent cells that can be isolated from a number of human tissues. In cancer, MSC have been implicated with tumor growth, invasion, metastasis, drug resistance and were even suggested as possible tumor-initiating cells in osteosarcoma (OS). However, MSC from OS and their possible tumor origin have not yet been thoroughly investigated. Therefore, primary OS mesenchymal progenitors and OS-derived MSC were studied. OS samples contained very high frequencies of mesenchymal progenitor cells as measured by the CFU-F assay (median: 1,117 colonies per 10(5) cells, range: 133 - 3,000, n=6). This is considerably higher compared to other human tissues such as normal bone marrow (1.3 ± 0.2 colonies per 10(5) cells, n=8). OS-derived MSC (OS-MSC) showed normal MSC morphology and expressed the typical MSC surface marker profile (CD105/CD73/CD90/CD44/HLA-classI/CD166 positive, CD45/CD34/CD14/CD19/HLA-DR/CD31 negative). Furthermore, all OS-MSC samples could be differentiated into the osteogenic lineage, and all but one sample into adipocytes and chondrocytes. Genetic analysis of OS-MSC as well as OS-derived spheres showed no tumor-related chromosomal aberrations. OS-MSC expression of markers related to tumor-associated fibroblasts (fibroblast surface protein, alpha-smooth muscle actin, vimentin) was comparable to bone marrow MSC and OS-MSC growth was considerably affected by tyrosine kinase inhibitors. Taken together, our results demonstrate that normal, non-malignant mesenchymal stroma cells are isolated from OS when MSC culture techniques are applied. OS-MSC represent a major constituent of the tumor microenvironment, and they share many properties with bone marrow-derived MSC. © 2010 UICC.
  •  
3.
  •  
4.
  • Cusulin, Carlo, et al. (författare)
  • Embryonic Stem Cell-Derived Neural Stem Cells Fuse with Microglia and Mature Neurons.
  • 2012
  • Ingår i: Stem Cells. - : Oxford University Press (OUP). - 1549-4918 .- 1066-5099.
  • Tidskriftsartikel (refereegranskat)abstract
    • Transplantation of neural stem cells (NSCs) is a novel strategy to restore function in the diseased brain, acting through multiple mechanisms, e.g., neuronal replacement, neuroprotection and modulation of inflammation. Whether transplanted NSCs can operate by fusing with microglial cells or mature neurons is largely unknown. Here we have studied the interaction of a mouse embryonic stem cell-derived neural stem (NS) cell line with rat and mouse microglia and neurons in vitro and in vivo. We show that NS cells spontaneously fuse with co-cultured cortical neurons, and that this process requires the presence of microglia. Our in vitro data indicate that the NS cells can first fuse with microglia, and then with neurons. The fused NS/microglial cells express markers and retain genetic and functional characteristics of both parental cell types, being able to respond to microglia-specific stimuli (LPS and IL-4/IL-13) and to differentiate to neurons and astrocytes. The NS cells fuse with microglia, at least partly, through interaction between phosphatidylserine (PS) exposed on the surface of NS cells and CD36 receptor on microglia. Transplantation of NS cells into rodent cortex results in fusion with mature pyramidal neurons, which often carry two nuclei, a process probably mediated by microglia. The fusogenic role of microglia could be even more important after NSC transplantation into brains affected by neurodegenerative diseases associated with microglia activation. It remains to be elucidated how the occurrence of the fused cells will influence the functional outcome after NSC transplantation in the diseased brain.
  •  
5.
  •  
6.
  • Kasetty, Gopinath, et al. (författare)
  • Anti-endotoxic and antibacterial effects of a dermal substitute coated with host defense peptides.
  • 2015
  • Ingår i: Biomaterials. - : Elsevier BV. - 1878-5905 .- 0142-9612. ; 53, s. 415-425
  • Tidskriftsartikel (refereegranskat)abstract
    • Biomaterials used during surgery and wound treatment are of increasing importance in modern medical care. In the present study we set out to evaluate the addition of thrombin-derived host defense peptides to human acellular dermis (hAD, i.e. epiflex(®)). Antimicrobial activity of the functionalized hAD was demonstrated using radial diffusion and viable count assays against Gram-negative Escherichia coli, Pseudomonas aeruginosa and Gram-positive Staphylococcus aureus bacteria. Electron microscopy analyses showed that peptide-mediated bacterial killing led to reduced hAD degradation. Furthermore, peptide-functionalized hAD displayed endotoxin-binding activity in vitro, as evidenced by inhibition of NF-κB activation in human monocytic cells (THP-1 cells) and a reduction of pro-inflammatory cytokine production in whole blood in response to lipopolysaccharide stimulation. The dermal substitute retained its anti-endotoxic activity after washing, compatible with results showing that the hAD bound a significant amount of peptide. Furthermore, bacteria-induced contact activation was inhibited by peptide addition to the hAD. E. coli infected hAD, alone, or after treatment with the antiseptic substance polyhexamethylenebiguanide (PHMB), yielded NF-κB activation in THP-1 cells. The activation was abrogated by peptide addition. Thus, thrombin-derived HDPs should be of interest in the further development of new biomaterials with combined antimicrobial and anti-endotoxic functions for use in surgery and wound treatment.
  •  
7.
  •  
8.
  •  
9.
  • Rolandsson Enes, Sara, et al. (författare)
  • Primary mesenchymal stem cells in human transplanted lungs are CD90/CD105 perivascularly located tissue-resident cells
  • 2014
  • Ingår i: BMJ Open Respiratory Research. - : BMJ Publishing Group. - 2052-4439. ; 1:1
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Mesenchymal stem cells (MSC) have not only been implicated in the development of lung diseases, but they have also been proposed as a future cell-based therapy for lung diseases. However, the cellular identity of the primary MSC in human lung tissues has not yet been reported. This study therefore aimed to identify and characterise the ‘bona fide’ MSC in human lungs and to investigate if the MSC numbers correlate with the development of bronchiolitis obliterans syndrome in lung-transplanted patients. METHODS: Primary lung MSC were directly isolated or culture-derived from central and peripheral transbronchial biopsies of lung-transplanted patients and evaluated using a comprehensive panel of in vitro and in vivo assays. RESULTS: Primary MSC were enriched in the CD90/CD105 mononuclear cell fraction with mesenchymal progenitor frequencies of up to four colony-forming units, fibroblast/100 cells. In situ staining of lung tissues revealed that CD90/CD105 MSCs were located perivascularly. MSC were tissue-resident and exclusively donor lung-derived even in biopsies obtained from patients as long as 16 years after transplantation. Culture-derived mesenchymal stromal cells showed typical in vitro MSC properties; however, xenotransplantation into non-obese diabetic/severe combined immunodeficient (NOD/SCID) mice showed that lung MSC readily differentiated into adipocytes and stromal tissues, but lacked significant in vivo bone formation. CONCLUSIONS: These data clearly demonstrate that primary MSC in human lung tissues are not only tissue resident but also tissue-specific. The identification and phenotypic characterisation of primary lung MSC is an important first step in identifying the role of MSC in normal lung physiology and pulmonary diseases.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 14

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy