SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Brunner Fabian J.) "

Sökning: WFRF:(Brunner Fabian J.)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Brunner, Fabian J., et al. (författare)
  • Application of non-HDL cholesterol for population-based cardiovascular risk stratification : results from the Multinational Cardiovascular Risk Consortium
  • 2019
  • Ingår i: The Lancet. - : Elsevier. - 0140-6736 .- 1474-547X. ; 394:10215, s. 2173-2183
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The relevance of blood lipid concentrations to long-term incidence of cardiovascular disease and the relevance of lipid-lowering therapy for cardiovascular disease outcomes is unclear. We investigated the cardiovascular disease risk associated with the full spectrum of bloodstream non-HDL cholesterol concentrations. We also created an easy-to-use tool to estimate the long-term probabilities for a cardiovascular disease event associated with non-HDL cholesterol and modelled its risk reduction by lipid-lowering treatment.Methods: In this risk-evaluation and risk-modelling study, we used Multinational Cardiovascular Risk Consortium data from 19 countries across Europe, Australia, and North America. Individuals without prevalent cardiovascular disease at baseline and with robust available data on cardiovascular disease outcomes were included. The primary composite endpoint of atherosclerotic cardiovascular disease was defined as the occurrence of the coronary heart disease event or ischaemic stroke. Sex-specific multivariable analyses were computed using non-HDL cholesterol categories according to the European guideline thresholds, adjusted for age, sex, cohort, and classical modifiable cardiovascular risk factors. In a derivation and validation design, we created a tool to estimate the probabilities of a cardiovascular disease event by the age of 75 years, dependent on age, sex, and risk factors, and the associated modelled risk reduction, assuming a 50% reduction of non-HDL cholesterol.Findings: Of the 524 444 individuals in the 44 cohorts in the Consortium database, we identified 398 846 individuals belonging to 38 cohorts (184 055 [48·7%] women; median age 51·0 years [IQR 40·7–59·7]). 199 415 individuals were included in the derivation cohort (91 786 [48·4%] women) and 199 431 (92 269 [49·1%] women) in the validation cohort. During a maximum follow-up of 43·6 years (median 13·5 years, IQR 7·0–20·1), 54 542 cardiovascular endpoints occurred. Incidence curve analyses showed progressively higher 30-year cardiovascular disease event-rates for increasing non-HDL cholesterol categories (from 7·7% for non-HDL cholesterol <2·6 mmol/L to 33·7% for ≥5·7 mmol/L in women and from 12·8% to 43·6% in men; p<0·0001). Multivariable adjusted Cox models with non-HDL cholesterol lower than 2·6 mmol/L as reference showed an increase in the association between non-HDL cholesterol concentration and cardiovascular disease for both sexes (from hazard ratio 1·1, 95% CI 1·0–1·3 for non-HDL cholesterol 2·6 to <3·7 mmol/L to 1·9, 1·6–2·2 for ≥5·7 mmol/L in women and from 1·1, 1·0–1·3 to 2·3, 2·0–2·5 in men). The derived tool allowed the estimation of cardiovascular disease event probabilities specific for non-HDL cholesterol with high comparability between the derivation and validation cohorts as reflected by smooth calibration curves analyses and a root mean square error lower than 1% for the estimated probabilities of cardiovascular disease. A 50% reduction of non-HDL cholesterol concentrations was associated with reduced risk of a cardiovascular disease event by the age of 75 years, and this risk reduction was greater the earlier cholesterol concentrations were reduced.Interpretation: Non-HDL cholesterol concentrations in blood are strongly associated with long-term risk of atherosclerotic cardiovascular disease. We provide a simple tool for individual long-term risk assessment and the potential benefit of early lipid-lowering intervention. These data could be useful for physician–patient communication about primary prevention strategies.
  •  
2.
  • Arnold, Natalie, et al. (författare)
  • C-reactive protein modifies lipoprotein(a)-related risk for coronary heart disease : the BiomarCaRE project
  • 2024
  • Ingår i: European Heart Journal. - : Oxford University Press. - 0195-668X .- 1522-9645. ; 45:12, s. 1043-1054
  • Tidskriftsartikel (refereegranskat)abstract
    • Background and Aims: Recent investigations have suggested an interdependence of lipoprotein(a) [Lp(a)]-related risk for cardiovascular disease with background inflammatory burden. The aim the present analysis was to investigate whether high-sensitive C-reactive protein (hsCRP) modulates the association between Lp(a) and coronary heart disease (CHD) in the general population.Methods: Data from 71 678 participants from 8 European prospective population-based cohort studies were used (65 661 without/6017 with established CHD at baseline; median follow-up 9.8/13.8 years, respectively). Fine and Gray competing risk-adjusted models were calculated according to accompanying hsCRP concentration (<2 and ≥2 mg/L).Results: Among CHD-free individuals, increased Lp(a) levels were associated with incident CHD irrespective of hsCRP concentration: fully adjusted sub-distribution hazard ratios [sHRs (95% confidence interval)] for the highest vs. lowest fifth of Lp(a) distribution were 1.45 (1.23-1.72) and 1.48 (1.23-1.78) for a hsCRP group of <2 and ≥2 mg/L, respectively, with no interaction found between these two biomarkers on CHD risk (Pinteraction = 0.82). In those with established CHD, similar associations were seen only among individuals with hsCRP ≥ 2 mg/L [1.34 (1.03-1.76)], whereas among participants with a hsCRP concentration <2 mg/L, there was no clear association between Lp(a) and future CHD events [1.29 (0.98-1.71)] (highest vs. lowest fifth, fully adjusted models; Pinteraction = 0.024).Conclusions: While among CHD-free individuals Lp(a) was significantly associated with incident CHD regardless of hsCRP, in participants with CHD at baseline, Lp(a) was related to recurrent CHD events only in those with residual inflammatory risk. These findings might guide adequate selection of high-risk patients for forthcoming Lp(a)-targeting compounds.
  •  
3.
  • Arnold, Natalie, et al. (författare)
  • Impact of lipoprotein(a) level on low-density lipoprotein cholesterol– or apolipoprotein B–related risk of coronary heart disease
  • 2024
  • Ingår i: Journal of the American College of Cardiology. - : Elsevier. - 0735-1097 .- 1558-3597. ; 84:2, s. 165-177
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Conventional low-density lipoprotein cholesterol (LDL-C) quantification includes cholesterol attributable to lipoprotein(a) (Lp(a)-C) due to their overlapping densities.Objectives: The purposes of this study were to compare the association between LDL-C and LDL-C corrected for Lp(a)-C (LDLLp(a)corr) with incident coronary heart disease (CHD) in the general population and to investigate whether concomitant Lp(a) values influence the association of LDL-C or apolipoprotein B (apoB) with coronary events.Methods: Among 68,748 CHD-free subjects at baseline LDLLp(a)corr was calculated as “LDL-C—Lp(a)-C,” where Lp(a)-C was 30% or 17.3% of total Lp(a) mass. Fine and Gray competing risk-adjusted models were applied for the association between the outcome incident CHD and: 1) LDL-C and LDLLp(a)corr in the total sample; and 2) LDL-C and apoB after stratification by Lp(a) mass (≥/<90th percentile).Results: Similar risk estimates for incident CHD were found for LDL-C and LDL-CLp(a)corr30 or LDL-CLp(a)corr17.3 (subdistribution HR with 95% CI) were 2.73 (95% CI: 2.34-3.20) vs 2.51 (95% CI: 2.15-2.93) vs 2.64 (95% CI: 2.26-3.10), respectively (top vs bottom fifth; fully adjusted models). Categorization by Lp(a) mass resulted in higher subdistribution HRs for uncorrected LDL-C and incident CHD at Lp(a) ≥90th percentile (4.38 [95% CI: 2.08-9.22]) vs 2.60 [95% CI: 2.21-3.07]) at Lp(a) <90th percentile (top vs bottom fifth; Pinteraction0.39). In contrast, apoB risk estimates were lower in subjects with higher Lp(a) mass (2.43 [95% CI: 1.34-4.40]) than in Lp(a) <90th percentile (3.34 [95% CI: 2.78-4.01]) (Pinteraction0.49).Conclusions: Correction of LDL-C for its Lp(a)-C content provided no meaningful information on CHD-risk estimation at the population level. Simple categorization of Lp(a) mass (≥/<90th percentile) influenced the association between LDL-C or apoB with future CHD mostly at higher Lp(a) levels.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy