SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Brzoska K.) "

Sökning: WFRF:(Brzoska K.)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abend, M., et al. (författare)
  • Inter-laboratory comparison of gene expression biodosimetry for protracted radiation exposures as part of the RENEB and EURADOS WG10 2019 exercise
  • 2021
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Large-scale radiation emergency scenarios involving protracted low dose rate radiation exposure (e.g. a hidden radioactive source in a train) necessitate the development of high throughput methods for providing rapid individual dose estimates. During the RENEB (Running the European Network of Biodosimetry) 2019 exercise, four EDTA-blood samples were exposed to an Iridium-192 source (1.36 TBq, Tech-Ops 880 Sentinal) at varying distances and geometries. This resulted in protracted doses ranging between 0.2 and 2.4 Gy using dose rates of 1.5-40 mGy/min and exposure times of 1 or 2.5 h. Blood samples were exposed in thermo bottles that maintained temperatures between 39 and 27.7 degrees C. After exposure, EDTA-blood samples were transferred into PAXGene tubes to preserve RNA. RNA was isolated in one laboratory and aliquots of four blinded RNA were sent to another five teams for dose estimation based on gene expression changes. Using an X-ray machine, samples for two calibration curves (first: constant dose rate of 8.3 mGy/min and 0.5-8 h varying exposure times; second: varying dose rates of 0.5-8.3 mGy/min and 4 h exposure time) were generated for distribution. Assays were run in each laboratory according to locally established protocols using either a microarray platform (one team) or quantitative real-time PCR (qRT-PCR, five teams). The qRT-PCR measurements were highly reproducible with coefficient of variation below 15% in >= 75% of measurements resulting in reported dose estimates ranging between 0 and 0.5 Gy in all samples and in all laboratories. Up to twofold reductions in RNA copy numbers per degree Celsius relative to 37 degrees C were observed. However, when irradiating independent samples equivalent to the blinded samples but increasing the combined exposure and incubation time to 4 h at 37 degrees C, expected gene expression changes corresponding to the absorbed doses were observed. Clearly, time and an optimal temperature of 37 degrees C must be allowed for the biological response to manifest as gene expression changes prior to running the gene expression assay. In conclusion, dose reconstructions based on gene expression measurements are highly reproducible across different techniques, protocols and laboratories. Even a radiation dose of 0.25 Gy protracted over 4 h (1 mGy/min) can be identified. These results demonstrate the importance of the incubation conditions and time span between radiation exposure and measurements of gene expression changes when using this method in a field exercise or real emergency situation.
  •  
2.
  • Abend, M., et al. (författare)
  • RENEB Inter-Laboratory Comparison 2021 : The Gene Expression Assay
  • 2023
  • Ingår i: Radiation Research. - 0033-7587 .- 1938-5404. ; 199:6, s. 598-615
  • Tidskriftsartikel (refereegranskat)abstract
    • Early and high-throughput individual dose estimates are essential following large-scale radiation exposure events. In the context of the Running the European Network for Biodosimetry and Physical Dosimetry (RENEB) 2021 exercise, gene expression assays were conducted and their corresponding performance for dose-assessment is presented in this publication. Three blinded, coded whole blood samples from healthy donors were exposed to 0, 1.2 and 3.5 Gy X-ray doses (240 kVp, 1 Gy/min) using the X-ray source Yxlon. These exposures correspond to clinically relevant groups of unexposed, low dose (no severe acute health effects expected) and high dose exposed individuals (requiring early intensive medical health care). Samples were sent to eight teams for dose estimation and identification of clinically relevant groups. For quantitative reverse transcription polymerase chain reaction (qRT-PCR) and microarray analyses, samples were lysed, stored at 20°C and shipped on wet ice. RNA isolations and assays were run in each laboratory according to locally established protocols. The time-to-result for both rough early and more precise later reports has been documented where possible. Accuracy of dose estimates was calculated as the difference between estimated and reference doses for all doses (summed absolute difference, SAD) and by determining the number of correctly reported dose estimates that were defined as ±0.5 Gy for reference doses <2.5 Gy and ±1.0 Gy for reference doses >3 Gy, as recommended for triage dosimetry. We also examined the allocation of dose estimates to clinically/diagnostically relevant exposure groups. Altogether, 105 dose estimates were reported by the eight teams, and the earliest report times on dose categories and estimates were 5 h and 9 h, respectively. The coefficient of variation for 85% of all 436 qRT-PCR measurements did not exceed 10%. One team reported dose estimates that systematically deviated several-fold from reported dose estimates, and these outliers were excluded from further analysis. Teams employing a combination of several genes generated about two-times lower median SADs (0.8 Gy) compared to dose estimates based on single genes only (1.7 Gy). When considering the uncertainty intervals for triage dosimetry, dose estimates of all teams together were correctly reported in 100% of the 0 Gy, 50% of the 1.2 Gy and 50% of the 3.5 Gy exposed samples. The order of dose estimates (from lowest to highest) corresponding to three dose categories (unexposed, low dose and highest exposure) were correctly reported by all teams and all chosen genes or gene combinations. Furthermore, if teams reported no exposure or an exposure >3.5 Gy, it was always correctly allocated to the unexposed and the highly exposed group, while low exposed (1.2 Gy) samples sometimes could not be discriminated from highly (3.5 Gy) exposed samples. All teams used FDXR and 78.1% of correct dose estimates used FDXR as one of the predictors. Still, the accuracy of reported dose estimates based on FDXR differed considerably among teams with one team's SAD (0.5 Gy) being comparable to the dose accuracy employing a combination of genes. Using the workflow of this reference team, we performed additional experiments after the exercise on residual RNA and cDNA sent by six teams to the reference team. All samples were processed similarly with the intention to improve the accuracy of dose estimates when employing the same workflow. Re-evaluated dose estimates improved for half of the samples and worsened for the others. In conclusion, this inter-laboratory comparison exercise enabled (1) identification of technical problems and corrections in preparations for future events, (2) confirmed the early and high-throughput capabilities of gene expression, (3) emphasized different biodosimetry approaches using either only FDXR or a gene combination, (4) indicated some improvements in dose estimation with FDXR when employing a similar methodology, which requires further research for the final conclusion and (5) underlined the applicability of gene expression for identification of unexposed and highly exposed samples, supporting medical management in radiological or nuclear scenarios. 
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  • Westerling, Ragnar, et al. (författare)
  • Promoting rational antibiotic use in Turkey and among Turkish migrants in Europe - implications of a qualitative study in four countries
  • 2020
  • Ingår i: Globalization and Health. - : BMC. - 1744-8603. ; 16
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Antimicrobial resistance is considered one of the major threats to global health. The emergence of resistant microorganisms is a consequence of irrational use of antibiotics. In Turkey, the consumption of antibiotics is relatively high and antibiotics are among the most commonly used drugs. However, Turkey has adopted new, more restrictive policies and regulations on antibiotics. In addition, Turkish migrants to EU countries, such as Germany, the Netherlands and Sweden, may encounter health systems that promote a more restrictive and rational antibiotic use. The objective of this paper was to explore the variation in implemented policies related to rational antibiotic use that citizens in Turkey and Turkish migrants in Germany, the Netherlands and Sweden are subjected to and to discuss the implications for the promotion of rational antibiotic use. Data were collected through focus groups and individual interviews with citizens, physicians and pharmacists in the four countries. In total, 130 respondents were interviewed. Content analysis was used.Results: Three relevant themes were identified: Implementation of regulations and recommendations, Access to antibiotics and Need for health communication. Irrational use of antibiotics was reported mainly in Turkey. While it had become less likely to get antibiotics without a prescription, non-prescribed antibiotics remained a problem in Turkey. In the three EU countries, there were also alternative ways of getting antibiotics. Low levels of knowledge about the rational antibiotic use were reported in Turkey, while there were several sources of information on this in the EU countries. Communication with and trust in physicians were considered to be important. There were also system barriers, such as lacking opportunities for physicians to manage care in accordance with current evidence in Turkey and factors limiting access to care in EU countries.Conclusions: Several fields of importance for promoting rational antibiotic use were identified. There is a need for harmonisation of health-related regulations and policy programmes. Antibiotics should only be available with a prescription. Programmes for rational antibiotic use should be implemented on a broad scale, in medical care, at pharmacies and in the population. Methods for health communication and patient-centred care should be further developed and implemented in this field.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy