SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bubelis E.) "

Sökning: WFRF:(Bubelis E.)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Mikityuk, K., et al. (författare)
  • Horizon-2020 ESFR-SMART project on Sodium Fast Reactor Safety: status after 18 months
  • 2019
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • To improve the public acceptance of the future nuclear power in Europe we have to demonstrate that the new reactors have significantly higher safety level compared to traditional reactors. The ESFR-SMART project (European Sodium Fast Reactor Safety Measures Assessment and Research Tools) aims at enhancing further the safety of Generation-IV SFRs and in particular of the commercial-size European Sodium Fast Reactor (ESFR) in accordance with the European Sustainable Nuclear Industrial Initiative (ESNII) roadmap and in close cooperation with the Advanced Sodium Technological Reactor for Industrial Demonstration (ASTRID) program. The project aims at 5 specific objectives: 1. Produce new experimental data in order to support calibration and validation of the computational tools for each defence-in-depth level. 2. Test and qualify new instrumentations in order to support their utilization in the reactor protection system. 3. Perform further calibration and validation of the computational tools for each defence-in-depth level in order to support safety assessments of Generation-IV SFRs, using the data produced in the project as well as selected legacy data. 4. Select, implement and assess new safety measures for the commercial-size ESFR, using the GIF methodologies, the FP7 CP-ESFR project legacy, the calibrated and validated codes and being in accordance with the update of the European and international safety frameworks taking into account the Fukushima accident. 5. Strengthen and link together new networks, in particular, the network of the European sodium facilities and the network of the European students working on the SFR technology. By addressing the industry, policy makers and general public, the project is expected to make a meaningful impact on economics, environment, EU policy and society. Selected results and milestones achieved during the first eighteen months of the project will be briefly presented, including − proposal of new safety measures for ESFR; − evaluation of ESFR core performance; − benchmarking of codes; − experimental programs; and − education and training.
  •  
2.
  • Bubelis, E., et al. (författare)
  • System codes benchmarking on a low sodium void effect SFR heterogeneous core under ULOF conditions
  • 2017
  • Ingår i: Nuclear Engineering and Design. - : Elsevier. - 0029-5493 .- 1872-759X. ; 320, s. 325-345
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper discusses system codes benchmarking activities on an ASTRID-like heterogeneous fast core under a representative design basis accident condition: the unprotected loss of flow accident (ULOF). The paper provides evidence that all the system codes used in this exercise are capable to simulate the transient behavior of heterogeneous SFR cores up to the initiation of sodium boiling. As a proof of this, a comparison of steady-state results and dynamic simulation results for a ULOF transient (simulated using system codes in combination with neutron point kinetics) are provided and discussed in this paper. The paper contains a brief description of the system codes (TRACE, CATHARE, SIM-SFR, SAS-SFR, ATHLET, SPECTRA, SAS4A) used by the participants (PSI, CEA, EDF, KIT, GRS, UPVLC, NRG, KTH), assumptions made during the simulations, as well as results obtained.
  •  
3.
  • Bandini, G., et al. (författare)
  • Safety Analysis Results of Representative DEC Accidental Transients for the ALFRED Reactor
  • 2013
  • Konferensbidrag (refereegranskat)abstract
    • The conceptual design of the Advanced Lead Fast Reactor European Demonstrator (ALFRED) is under development within the LEADER project to meet the safety objectives of Gen IV nuclear energy systems. This paper presents the main results of the safety analysis for beyond design basis conditions, namely design extension conditions (DEC), which include the failure of prevention and mitigation systems, like the reactor scram in the so called unprotected transients. The main objective of this analysis is to evaluate the impact of the core and plant design features on the intrinsic safety behaviour of the ALFRED reactor. Several computer codes: SIM LFR, RELAP5, CATHARE, SPECTRA and TRACE are applied to evaluate the consequences of representative unprotected accident scenarios such as Loss of Flow, Loss of Heat Sink and Reactivity initiated accidents. Additionally, the consequences of steam generator tube rupture and partial sub assembly flow blockage events are assessed by means of appropriate fluid dynamic codes. 
  •  
4.
  • De Bruyn, D., et al. (författare)
  • Main achievements of the FP7-LEADER collaborative project of the european commission regarding the design of a lead-cooled fast reactor
  • 2013
  • Ingår i: International Congress on Advances in Nuclear Power Plants, ICAPP 2013. - 9781632660381 ; , s. 281-290
  • Konferensbidrag (refereegranskat)abstract
    • Concerns over energy resource availability, climate change, air quality, and energy security suggest an important role for nuclear power in future energy supplies. While the current Generation II and III nuclear power plant designs provide an economically and publicly acceptable electricity supply in many markets, further advances in nuclear energy system design can broaden the opportunities for the use of nuclear energy. To explore these opportunities, worldwide governments, industries, and research centres started a wide-ranging discussion on the development of new systems known as "Generation IV." The European Commission has organized the Sustainable Nuclear Energy Technology Platform that through its Strategic Research Agenda promoted the development of fast reactors with closed fuel cycle. Among the promising reactor technologies, the Lead Fast Reactor (LFR) has been identified as a technology with great potential to meet needs for both remote sites and central power stations. The LFR system features a fast-neutron spectrum allowing the possibility for a closed fuel cycle for efficient conversion of fertile uranium and management of actinides. A full actinide recycle fuel cycle is therefore envisioned for the design of the reference LFR meant for deployment, while the capabilities of the system to act as a net-burner of actinides from spent fuel are object of further investigation The LEADER project deals with the development of such a technology through two main goals: the conceptual design of an industrial-size LFR (the so-called European LFRor ELFR) and the conceptual design of a scaled down facility, the demonstration reactor called ALFRED (Advanced Lead Fast Reactor European Demonstrator). The European Commission, withinits seventh framework programme, has approved the proposal submitted by 16 partners comprising research centres, industrial partners and universities. The project has started in April 2010 for a duration of three years.The focus of the first part of the LEADER project was the resolution of the key issues of the previous sixth framework programme ELSY project in order to reach a new consistent industrial-size reactor ELFR configuration.With reference to this reactor configuration the design of the ALFRED demonstrator (sized at 300 MWth, about 120 MWe) has been performed. The development of such demonstrator reactor presents obviously strong and interesting synergies with the development of MYRRHA, a material and fuel testing facility proposed by the SCK·CEN research centre in Belgium. In this paper we present a synthesis of the main results of the LEADER project.
  •  
5.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy