SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bucher Elmar) "

Sökning: WFRF:(Bucher Elmar)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Arjonen, Antti, et al. (författare)
  • Mutant p53-associated myosin-X upregulation promotes breast cancer invasion and metastasis
  • 2014
  • Ingår i: Journal of Clinical Investigation. - : American Society for Clinical Investigation. - 0021-9738 .- 1558-8238. ; 124:3, s. 1069-1082
  • Tidskriftsartikel (refereegranskat)abstract
    • Mutations of the tumor suppressor TP53 are present in many forms of human cancer and are associated with increased tumor cell invasion and metastasis. Several mechanisms have been identified for promoting dissemination of cancer cells with TP53 mutations, including increased targeting of integrins to the plasma membrane. Here, we demonstrate a role for the filopodia-inducing motor protein Myosin-X (Myo10) in mutant p53-driven cancer invasion. Analysis of gene expression profiles from 2 breast cancer data sets revealed that MYO10 was highly expressed in aggressive cancer subtypes. Myo10 was required for breast cancer cell invasion and dissemination in multiple cancer cell lines and murine models of cancer metastasis. Evaluation of a Myo10 mutant without the integrin-binding domain revealed that the ability of Myo10 to transport 131 integrins to the filopodia tip is required for invasion. Introduction of mutant p53 promoted Myo10 expression in cancer cells and pancreatic ductal adenocarcinoma in mice, whereas suppression of endogenous mutant p53 attenuated Myo10 levels and cell invasion. In clinical breast carcinomas, Myo10 was predominantly expressed at the invasive edges and correlated with the presence of TP53 mutations and poor prognosis. These data indicate that Myo10 upregulation in mutant p53-driven cancers is necessary for invasion and that plasma-membrane protrusions, such as filopodia, may serve as specialized metastatic engines.
  •  
2.
  • Brockmöller, Scarlet F., et al. (författare)
  • Integration of metabolomics and expression of glycerol-3-phosphate acyltransferase (GPAM) in breast cancer-link to patient survival, hormone receptor status, and metabolic profiling
  • 2012
  • Ingår i: Journal of Proteome Research. - : American Chemical Society (ACS). - 1535-3893 .- 1535-3907. ; 11:2, s. 850-60
  • Tidskriftsartikel (refereegranskat)abstract
    • Changes in lipid metabolism are an important but not well-characterized hallmark of cancer. On the basis of our recent findings of lipidomic changes in breast cancer, we investigated glycerol-3-phosphate acyltransferase (GPAM), a key enzyme in the lipid biosynthesis of triacylglycerols and phospholipids. GPAM protein expression was evaluated and linked to metabolomic and lipidomic profiles in a cohort of human breast carcinomas. In addition, GPAM mRNA expression was analyzed using the GeneSapiens in silico transcriptiomics database. High cytoplasmic GPAM expression was associated with hormone receptor negative status (p = 0.013). On the protein (p = 0.048) and mRNA (p = 0.001) levels, increased GPAM expression was associated with a better overall survival. Metabolomic analysis by GC-MS showed that sn-glycerol-3-phosphate, the substrate of GPAM, was elevated in breast cancer compared to normal breast tissue. LC-MS based lipidomic analysis identified significantly higher levels of phospholipids, especially phosphatidylcholines in GPAM protein positive tumors. In conclusion, our results suggest that GPAM is expressed in human breast cancer with associated changes in the cellular metabolism, in particular an increased synthesis of phospholipids, the major structural component of cellular membranes.
  •  
3.
  • Denkert, Carsten, et al. (författare)
  • Metabolomics of human breast cancer : new approaches for tumor typing and biomarker discovery
  • 2012
  • Ingår i: Genome Medicine. - London, United Kingdom : BioMed Central (BMC). - 1756-994X. ; 4:4
  • Forskningsöversikt (refereegranskat)abstract
    • Breast cancer is the most common cancer in women worldwide, and the development of new technologies for better understanding of the molecular changes involved in breast cancer progression is essential. Metabolic changes precede overt phenotypic changes, because cellular regulation ultimately affects the use of small-molecule substrates for cell division, growth or environmental changes such as hypoxia. Differences in metabolism between normal cells and cancer cells have been identified. Because small alterations in enzyme concentrations or activities can cause large changes in overall metabolite levels, the metabolome can be regarded as the amplified output of a biological system. The metabolome coverage in human breast cancer tissues can be maximized by combining different technologies for metabolic profiling. Researchers are investigating alterations in the steady state concentrations of metabolites that reflect amplified changes in genetic control of metabolism. Metabolomic results can be used to classify breast cancer on the basis of tumor biology, to identify new prognostic and predictive markers and to discover new targets for future therapeutic interventions. Here, we examine recent results, including those from the European FP7 project METAcancer consortium, that show that integrated metabolomic analyses can provide information on the stage, subtype and grade of breast tumors and give mechanistic insights. We predict an intensified use of metabolomic screens in clinical and preclinical studies focusing on the onset and progression of tumor development.
  •  
4.
  • Gross, Sean M., et al. (författare)
  • A multi-omic analysis of MCF10A cells provides a resource for integrative assessment of ligand-mediated molecular and phenotypic responses
  • 2022
  • Ingår i: Communications Biology. - : Springer Nature. - 2399-3642. ; 5:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The phenotype of a cell and its underlying molecular state is strongly influenced by extracellular signals, including growth factors, hormones, and extracellular matrix proteins. While these signals are normally tightly controlled, their dysregulation leads to phenotypic and molecular states associated with diverse diseases. To develop a detailed understanding of the linkage between molecular and phenotypic changes, we generated a comprehensive dataset that catalogs the transcriptional, proteomic, epigenomic and phenotypic responses of MCF10A mammary epithelial cells after exposure to the ligands EGF, HGF, OSM, IFNG, TGFB and BMP2. Systematic assessment of the molecular and cellular phenotypes induced by these ligands comprise the LINCS Microenvironment (ME) perturbation dataset, which has been curated and made publicly available for community-wide analysis and development of novel computational methods ( synapse.org/LINCS_MCF10A ). In illustrative analyses, we demonstrate how this dataset can be used to discover functionally related molecular features linked to specific cellular phenotypes. Beyond these analyses, this dataset will serve as a resource for the broader scientific community to mine for biological insights, to compare signals carried across distinct molecular modalities, and to develop new computational methods for integrative data analysis.
  •  
5.
  • Hilvo, Mika, et al. (författare)
  • Novel theranostic opportunities offered by characterization of altered membrane lipid metabolism in breast cancer progression
  • 2011
  • Ingår i: Cancer Research. - Philadelphia, PA, USA : American Association for Cancer Research. - 0008-5472 .- 1538-7445. ; 71:9, s. 3236-45
  • Tidskriftsartikel (refereegranskat)abstract
    • Activation of lipid metabolism is an early event in carcinogenesis and a central hallmark of many cancers. However, the precise molecular composition of lipids in tumors remains generally poorly characterized. The aim of the present study was to analyze the global lipid profiles of breast cancer, integrate the results to protein expression, and validate the findings by functional experiments. Comprehensive lipidomics was conducted in 267 human breast tissues using ultraperformance liquid chromatography/ mass spectrometry. The products of de novo fatty acid synthesis incorporated into membrane phospholipids, such as palmitate-containing phosphatidylcholines, were increased in tumors as compared with normal breast tissues. These lipids were associated with cancer progression and patient survival, as their concentration was highest in estrogen receptor-negative and grade 3 tumors. In silico transcriptomics database was utilized in investigating the expression of lipid metabolism related genes in breast cancer, and on the basis of these results, the expression of specific proteins was studied by immunohistochemistry. Immunohistochemical analyses showed that several genes regulating lipid metabolism were highly expressed in clinical breast cancer samples and supported also the lipidomics results. Gene silencing experiments with seven genes [ACACA (acetyl-CoA carboxylase α), ELOVL1 (elongation of very long chain fatty acid-like 1), FASN (fatty acid synthase), INSIG1 (insulin-induced gene 1), SCAP (sterol regulatory element-binding protein cleavage-activating protein), SCD (stearoyl-CoA desaturase), and THRSP (thyroid hormone-responsive protein)] indicated that silencing of multiple lipid metabolism-regulating genes reduced the lipidomic profiles and viability of the breast cancer cells. Taken together, our results imply that phospholipids may have diagnostic potential as well as that modulation of their metabolism may provide therapeutic opportunities in breast cancer treatment.
  •  
6.
  • Nordgard, Silje H, et al. (författare)
  • Genome-wide analysis identifies 16q deletion associated with survival, molecular subtypes, mRNA expression, and germline haplotypes in breast cancer patients
  • 2008
  • Ingår i: Genes, Chromosomes and Cancer. - : Wiley. - 1045-2257 .- 1098-2264. ; 47:8, s. 680-696
  • Tidskriftsartikel (refereegranskat)abstract
    • Breast carcinomas are characterized by DNA copy number alterations (CNAs) with biological and clinical significance. This explorative study integrated CNA, expression, and germline genotype data of 112 early-stage breast cancer patients. Recurrent CNAs differed substantially between tumor subtypes classified according to expression pattern. Deletion of 16q was overrepresented in Luminal A, and a predictor of good prognosis, both overall and for the nonluminal A subgroups. The deleted region most significantly associated with survival mapped to 16q22.2, harboring the genes TXNL4B and DXH38, whose expression was strongly correlated with the deletion. The area most frequently deleted resided on 16q23.1, 3.5 MB downstream of the area most significantly associated with survival, and included the tumor suppressor gene ADAMTS18 and the cell recognition gene CNTNAP4. Whole-genome association analysis identified germline single nucleotide polymorphisms (SNPs) and their corresponding haplotypes, residing on several different chromosomes, to be associated with deletion of 16q. The genes where these SNPs reside encode proteins involved in the extracellular matrix (CHST3 and SPOCK2), in regulation of the cell cycle (JMY, PTPRN2, and Cwf19L2) and chromosome stability (KPNB1).
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6
Typ av publikation
tidskriftsartikel (5)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (6)
Författare/redaktör
Bucher, Elmar (6)
Hilvo, Mika (3)
Orešič, Matej, 1967- (3)
Fiehn, Oliver (3)
Iljin, Kristiina (3)
Budczies, Jan (3)
visa fler...
Loibl, Sibylle (3)
Denkert, Carsten (3)
Kallioniemi, Olli (2)
Griffin, Julian L (2)
Klauschen, Frederick (2)
Brockmöller, Scarlet (2)
Børresen-Dale, Anne- ... (1)
Syvänen, Ann-Christi ... (1)
Kristensen, Vessela ... (1)
Hyötyläinen, Tuulia, ... (1)
Seppänen-Laakso, Tuu ... (1)
Mattila, Elina (1)
Fraenkel, Ernest (1)
Cao, Yihai (1)
Taimen, Pekka (1)
Sihto, Harri (1)
Joensuu, Heikki (1)
Arjonen, Antti (1)
Kaukonen, Riina (1)
Rouhi, Pegah (1)
Hognas, Gunilla (1)
Miller, Bryan W. (1)
Morton, Jennifer P. (1)
Virtakoivu, Reetta (1)
Sansom, Owen J. (1)
Ivaska, Johanna (1)
Nygren, Heli (1)
Castillo, Sandra (1)
Mills, Gordon B (1)
Brockmöller, Scarlet ... (1)
Müller, Berit M. (1)
Darb-Esfahani, Silvi ... (1)
Sinn, Bruno V. (1)
Prinzler, Judith (1)
Bangemann, Nikola (1)
Ismaeel, Fakher (1)
Dietel, Manfred (1)
Richter-Ehrenstein, ... (1)
Griffin, Julian (1)
Salek, Reza (1)
Barupal, Dinesh Kuma ... (1)
Nekljudova, Valentin ... (1)
Omberg, Larsson (1)
Erdem, Cemal (1)
visa färre...
Lärosäte
Örebro universitet (3)
Umeå universitet (1)
Uppsala universitet (1)
Linköpings universitet (1)
Karolinska Institutet (1)
Språk
Engelska (6)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (3)
Naturvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy