SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Budach Volker) "

Sökning: WFRF:(Budach Volker)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Petit, Claire, et al. (författare)
  • Chemotherapy and radiotherapy in locally advanced head and neck cancer : an individual patient data network meta-analysis
  • 2021
  • Ingår i: The Lancet Oncology. - : Elsevier. - 1470-2045 .- 1474-5488. ; 22:5, s. 727-736
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Randomised, controlled trials and meta-analyses have shown the survival benefit of concomitant chemoradiotherapy or hyperfractionated radiotherapy in the treatment of locally advanced head and neck cancer. However, the relative efficacy of these treatments is unknown. We aimed to determine whether one treatment was superior to the other.METHODS: We did a frequentist network meta-analysis based on individual patient data of meta-analyses evaluating the role of chemotherapy (Meta-Analysis of Chemotherapy in Head and Neck Cancer [MACH-NC]) and of altered fractionation radiotherapy (Meta-Analysis of Radiotherapy in Carcinomas of Head and Neck [MARCH]). Randomised, controlled trials that enrolled patients with non-metastatic head and neck squamous cell cancer between Jan 1, 1980, and Dec 31, 2016, were included. We used a two-step random-effects approach, and the log-rank test, stratified by trial to compare treatments, with locoregional therapy as the reference. Overall survival was the primary endpoint. The global Cochran Q statistic was used to assess homogeneity and consistency and P score to rank treatments (higher scores indicate more effective therapies).FINDINGS: 115 randomised, controlled trials, which enrolled patients between Jan 1, 1980, and April 30, 2012, yielded 154 comparisons (28 978 patients with 19 253 deaths and 20 579 progression events). Treatments were grouped into 16 modalities, for which 35 types of direct comparisons were available. Median follow-up based on all trials was 6·6 years (IQR 5·0-9·4). Hyperfractionated radiotherapy with concomitant chemotherapy (HFCRT) was ranked as the best treatment for overall survival (P score 97%; hazard ratio 0·63 [95% CI 0·51-0·77] compared with locoregional therapy). The hazard ratio of HFCRT compared with locoregional therapy with concomitant chemoradiotherapy with platinum-based chemotherapy (CLRTP) was 0·82 (95% CI 0·66-1·01) for overall survival. The superiority of HFCRT was robust to sensitivity analyses. Three other modalities of treatment had a better P score, but not a significantly better HR, for overall survival than CLRTP (P score 78%): induction chemotherapy with taxane, cisplatin, and fluorouracil followed by locoregional therapy (ICTaxPF-LRT; 89%), accelerated radiotherapy with concomitant chemotherapy (82%), and ICTaxPF followed by CLRT (80%).INTERPRETATION: The results of this network meta-analysis suggest that further intensifying chemoradiotherapy, using HFCRT or ICTaxPF-CLRT, could improve outcomes over chemoradiotherapy for the treatment of locally advanced head and neck cancer.FUNDINGS: French Institut National du Cancer, French Ligue Nationale Contre le Cancer, and Fondation ARC.
  •  
2.
  • Skripcak, Tomas, et al. (författare)
  • Creating a data exchange strategy for radiotherapy research : Towards federated databases and anonymised public datasets
  • 2014
  • Ingår i: Radiotherapy and Oncology. - : Elsevier BV. - 0167-8140 .- 1879-0887. ; 113:3, s. 303-309
  • Tidskriftsartikel (refereegranskat)abstract
    • Disconnected cancer research data management and lack of information exchange about planned and ongoing research are complicating the utilisation of internationally collected medical information for improving cancer patient care. Rapidly collecting/pooling data can accelerate 'translational research in radiation therapy and oncology. The exchange of study data is one of the fundamental principles behind data aggregation and data mining. The possibilities of reproducing the original study results, performing further analyses on existing research data to generate new hypotheses or developing computational models to support medical decisions (e.g. risk/benefit analysis of treatment options) represent just a fraction of the potential benefits of medical data-pooling. Distributed machine learning and knowledge exchange from federated databases can be considered as one beyond other attractive approaches for knowledge generation within "Big Data". Data interoperability between research institutions should be the major concern behind a wider collaboration. Information captured in electronic patient records (EPRs) and study case report forms (eCRFs), linked together with medical imaging and treatment planning data, are deemed to be fundamental elements for large multi-centre studies in the field of radiation therapy and oncology. To fully utilise the captured medical information, the study data have to be more than just an electronic version of a traditional (un-modifiable) paper CRF. Challenges that have to be addressed are data interoperability, utilisation of standards, data quality and privacy concerns, data ownership, rights to publish, data pooling architecture and storage. This paper discusses a framework for conceptual packages of ideas focused on a strategic development for international research data exchange in the field of radiation therapy and oncology.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy