SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Buetti Dinh Antoine) "

Sökning: WFRF:(Buetti Dinh Antoine)

  • Resultat 1-10 av 20
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ahlstrand, Emma, et al. (författare)
  • An interactive computer lab of the galvanic cell for students in biochemistry
  • 2018
  • Ingår i: Biochemistry and molecular biology education. - : Wiley-Blackwell. - 1470-8175 .- 1539-3429. ; 46:1, s. 58-65
  • Tidskriftsartikel (refereegranskat)abstract
    • We describe an interactive module that can be used to teach basic concepts in electrochemistry and thermodynamics to first year natural science students. The module is used together with an experimental laboratory and improves the students’ understanding of thermodynamic quantities such as ΔrG, ΔrH, and ΔrS that are calculated but not directly measured in the lab. We also discuss how new technologies can substitute some parts of experimental chemistry courses, and improve accessibility to course material. Cloud computing platforms such as CoCalc facilitate the distribution of computer codes and allow students to access and apply interactive course tools beyond the course's scope. Despite some limitations imposed by cloud computing, the students appreciated the approach and the enhanced opportunities to discuss study questions with their classmates and instructor as facilitated by the interactive tools. 
  •  
2.
  • Bellenberg, Sören, et al. (författare)
  • Automated Microscopic Analysis of Metal Sulfide Colonization by Acidophilic Microorganisms
  • 2018
  • Ingår i: Applied and Environmental Microbiology. - : American society for microbiology. - 0099-2240 .- 1098-5336. ; 84:20
  • Tidskriftsartikel (refereegranskat)abstract
    • Industrial biomining processes are currently focused on metal sulfides and their dissolution, which is catalyzed by acidophilic iron(II)- and/or sulfur-oxidizing microorganisms. Cell attachment on metal sulfides is important for this process. Biofilm formation is necessary for seeding and persistence of the active microbial community in industrial biomining heaps and tank reactors, and it enhances metal release. In this study, we used a method for direct quantification of the mineral-attached cell population on pyrite or chalcopyrite particles in bioleaching experiments by coupling high-throughput, automated epifluorescence microscopy imaging of mineral particles with algorithms for image analysis and cell quantification, thus avoiding human bias in cell counting. The method was validated by quantifying cell attachment on pyrite and chalcopyrite surfaces with axenic cultures of Acidithiobacillus caldus, Leptospirillum ferriphilum, and Sulfobacillus thermosulfidooxidans. The method confirmed the high affinity of L. ferriphilum cells to colonize pyrite and chalcopyrite surfaces and indicated that biofilm dispersal occurs in mature pyrite batch cultures of this species. Deep neural networks were also applied to analyze biofilms of different microbial consortia. Recent analysis of the L. ferriphilum genome revealed the presence of a diffusible soluble factor (DSF) family quorum sensing system. The respective signal compounds are known as biofilm dispersal agents. Biofilm dispersal was confirmed to occur in batch cultures of L. ferriphilum and S. thermosulfidooxidans upon the addition of DSF family signal compounds. IMPORTANCE The presented method for the assessment of mineral colonization allows accurate relative comparisons of the microbial colonization of metal sulfide concentrate particles in a time-resolved manner. Quantitative assessment of the mineral colonization development is important for the compilation of improved mathematical models for metal sulfide dissolution. In addition, deep-learning algorithms proved that axenic or mixed cultures of the three species exhibited characteristic biofilm patterns and predicted the biofilm species composition. The method may be extended to the assessment of microbial colonization on other solid particles and may serve in the optimization of bioleaching processes in laboratory scale experiments with industrially relevant metal sulfide concentrates. Furthermore, the method was used to demonstrate that DSF quorum sensing signals directly influence colonization and dissolution of metal sulfides by mineral-oxidizing bacteria, such as L. ferriphilum and S. thermosulfidooxidans.
  •  
3.
  • Bellenberg, Sören, et al. (författare)
  • Diffusible signal factor signaling controls bioleaching activity and niche protection in the acidophilic, mineral-oxidizing leptospirilli
  • 2021
  • Ingår i: Scientific Reports. - : Springer Nature. - 2045-2322. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Bioleaching of metal sulfide ores involves acidophilic microbes that catalyze the chemical dissolution of the metal sulfide bond that is enhanced by attached and planktonic cell mediated oxidation of iron(II)-ions and inorganic sulfur compounds. Leptospirillum spp. often predominate in sulfide mineral-containing environments, including bioheaps for copper recovery from chalcopyrite, as they are effective primary mineral colonizers and oxidize iron(II)-ions efficiently. In this study, we demonstrated a functional diffusible signal factor interspecies quorum sensing signaling mechanism in Leptospirillum ferriphilum and Leptospirillum ferrooxidans that produces (Z)-11-methyl-2-dodecenoic acid when grown with pyrite as energy source. In addition, pure diffusible signal factor and extracts from supernatants of pyrite grown Leptospirillum spp. inhibited biological iron oxidation in various species, and that pyrite grown Leptospirillum cells were less affected than iron grown cells to self inhibition. Finally, transcriptional analyses for the inhibition of iron-grown L. ferriphilum cells due to diffusible signal factor was compared with the response to exposure of cells to N- acyl-homoserine-lactone type quorum sensing signal compounds. The data suggested that Leptospirillum spp. diffusible signal factor production is a strategy for niche protection and defense against other microbes and it is proposed that this may be exploited to inhibit unwanted acidophile species.
  •  
4.
  • Buetti-Dinh, Antoine, 1984-, et al. (författare)
  • A computational study of hedgehog signalling involved in basal cell carcinoma reveals the potential and limitation of combination therapy
  • 2018
  • Ingår i: BMC Cancer. - : BioMed Central. - 1471-2407. ; 18:1, s. 1-8
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The smoothened (SMO) receptor is an essential component of the Sonic hedgehog (SHH) signalling, which is associated with the development of skin basal cell carcinoma (BCC). SMO inhibitors are indicated for BCC patients when surgical treatment or radiation therapy are not possible. Unfortunately, SMO inhibitors are not always well tolerated due to severe side effects, and their therapeutical success is limited by resistance mutations. Methods: We investigated how common are resistance-causing mutations in two genomic databases which are not linked to BCC or other cancers, namely 1000 Genomes and ExAC. To examine the potential for combination therapy or other treatments, we further performed knowledge-based simulations of SHH signalling, in the presence or absence of SMO and PI3K/Akt inhibitors. Results: The database analysis revealed that of 18 known mutations associated with Vismodegib-resistance, three were identified in the databases. Treatment of individuals carrying such mutations is thus liable to fail a priori. Analysis of the simulations suggested that a combined inhibition of SMO and the PI3K/Akt signalling pathway may provide an effective reduction in tumour proliferation. However, the inhibition dosage of SMO and PI3K/Akt depended on the activity of phosphodiesterases (PDEs). Under high PDEs activities, SMO became the most important control node of the network. By applying PDEs inhibition, the control potential of SMO decreased and P13K appeared as a significant factor in controlling tumour proliferation. Conclusions: Our systems biology approach employs knowledge-based computer simulations to help interpret the large amount of data available in public databases, and provides application-oriented solutions for improved cancer resistance treatments.
  •  
5.
  • Buetti-Dinh, Antoine, 1984-, et al. (författare)
  • Computer simulations of the signalling network in FLT3+-acute myeloid leukaemia : indications for an optimal dosage of inhibitors against FLT3 and CDK6
  • 2018
  • Ingår i: BMC Bioinformatics. - London : BioMed Central. - 1471-2105. ; 19, s. 1-13
  • Tidskriftsartikel (refereegranskat)abstract
    • BackgroundMutations in the FMS-like tyrosine kinase 3 (FLT3) are associated with uncontrolled cellular functions that contribute to the development of acute myeloid leukaemia (AML). We performed computer simulations of the FLT3-dependent signalling network in order to study the pathways that are involved in AML development and resistance to targeted therapies.ResultsAnalysis of the simulations revealed the presence of alternative pathways through phosphoinositide 3 kinase (PI3K) and SH2-containing sequence proteins (SHC), that could overcome inhibition of FLT3. Inhibition of cyclin dependent kinase 6 (CDK6), a related molecular target, was also tested in the simulation but was not found to yield sufficient benefits alone.ConclusionsThe PI3K pathway provided a basis for resistance to treatments. Alternative signalling pathways could not, however, restore cancer growth signals (proliferation and loss of apoptosis) to the same levels as prior to treatment, which may explain why FLT3 resistance mutations are the most common resistance mechanism. Finally, sensitivity analysis suggested the existence of optimal doses of FLT3 and CDK6 inhibitors in terms of efficacy and toxicity.
  •  
6.
  • Buetti-Dinh, Antoine, 1984-, et al. (författare)
  • Control and signal processing by transcriptional interference
  • 2009
  • Ingår i: Molecular Systems Biology. - : EMBO. - 1744-4292 .- 1744-4292. ; 5, s. Article ID: 300-
  • Tidskriftsartikel (refereegranskat)abstract
    • A transcriptional activator can suppress gene expression by interfering with transcription initiated by another activator. Transcriptional interference has been increasingly recognized as a regulatory mechanism of gene expression. The signals received by the two antagonistically acting activators are combined by the polymerase trafficking along the DNA. We have designed a dual-control genetic system in yeast to explore this antagonism systematically. Antagonism by an upstream activator bears the hallmarks of competitive inhibition, whereas a downstream activator inhibits gene expression non-competitively. When gene expression is induced weakly, the antagonistic activator can have a positive effect and can even trigger paradoxical activation. Equilibrium and non-equilibrium models of transcription shed light on the mechanism by which interference converts signals, and reveals that self-antagonism of activators imitates the behavior of feed-forward loops. Indeed, a synthetic circuit generates a bell-shaped response, so that the induction of expression is limited to a narrow range of the input signal. The identification of conserved regulatory principles of interference will help to predict the transcriptional response of genes in their genomic context.
  •  
7.
  • Buetti-Dinh, Antoine, 1984-, et al. (författare)
  • Deep neural networks outperform human expert's capacity in characterizing bioleaching bacterial biofilm composition
  • 2019
  • Ingår i: Biotechnology Reports. - : Elsevier. - 2215-017X. ; 22, s. 1-5
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Deep neural networks have been successfully applied to diverse fields of computer vision. However, they only outperform human capacities in a few cases. Methods: The ability of deep neural networks versus human experts to classify microscopy images was tested on biofilm colonization patterns formed on sulfide minerals composed of up to three different bioleaching bacterial species attached to chalcopyrite sample particles. Results: A low number of microscopy images per category (<600) was sufficient for highly efficient computational analysis of the biofilm's bacterial composition. The use of deep neural networks reached an accuracy of classification of ∼90% compared to ∼50% for human experts. Conclusions: Deep neural networks outperform human experts’ capacity in characterizing bacterial biofilm composition involved in the degradation of chalcopyrite. This approach provides an alternative to standard, time-consuming biochemical methods. © 2019 The Author
  •  
8.
  •  
9.
  • Buetti-Dinh, Antoine, 1984-, et al. (författare)
  • Reverse engineering directed gene regulatory networks from transcriptomics and proteomics data of biomining bacterial communities with approximate Bayesian computation and steady-state signalling simulations
  • 2020
  • Ingår i: BMC Bioinformatics. - : BioMed Central (BMC). - 1471-2105. ; 21:1, s. 1-15
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Network inference is an important aim of systems biology. It enables the transformation of OMICs datasets into biological knowledge. It consists of reverse engineering gene regulatory networks from OMICs data, such as RNAseq or mass spectrometry-based proteomics data, through computational methods. This approach allows to identify signalling pathways involved in specific biological functions. The ability to infer causality in gene regulatory networks, in addition to correlation, is crucial for several modelling approaches and allows targeted control in biotechnology applications. Methods: We performed simulations according to the approximate Bayesian computation method, where the core model consisted of a steady-state simulation algorithm used to study gene regulatory networks in systems for which a limited level of details is available. The simulations outcome was compared to experimentally measured transcriptomics and proteomics data through approximate Bayesian computation. Results: The structure of small gene regulatory networks responsible for the regulation of biological functions involved in biomining were inferred from multi OMICs data of mixed bacterial cultures. Several causal inter- and intraspecies interactions were inferred between genes coding for proteins involved in the biomining process, such as heavy metal transport, DNA damage, replication and repair, and membrane biogenesis. The method also provided indications for the role of several uncharacterized proteins by the inferred connection in their network context. Conclusions: The combination of fast algorithms with high-performance computing allowed the simulation of a multitude of gene regulatory networks and their comparison to experimentally measured OMICs data through approximate Bayesian computation, enabling the probabilistic inference of causality in gene regulatory networks of a multispecies bacterial system involved in biomining without need of single-cell or multiple perturbation experiments. This information can be used to influence biological functions and control specific processes in biotechnology applications.
  •  
10.
  • Buetti-Dinh, Antoine, et al. (författare)
  • S100A4 and its role in metastasis : simulations of knockout and amplification of epithelial growth factor receptor and matrix metalloproteinases
  • 2015
  • Ingår i: Molecular Biosystems. - : Royal Society of Chemistry (RSC). - 1742-206X .- 1742-2051. ; 11:8, s. 2247-2254
  • Tidskriftsartikel (refereegranskat)abstract
    • The calcium-binding signalling protein S100A4 enhances metastasis in a variety of cancers. Despite a wealth of data available, the molecular mechanism by which S100A4 drives metastasis is unknown. Integration of the current knowledge defies straightforward intuitive interpretation and requires computer-aided approaches to represent the complexity emerging from cross-regulating species. Here we carried out a systematic sensitivity analysis of the S100A4 signalling network in order to identify key control parameters for efficient therapeutic intervention. Our approach only requires limited details of the molecular interactions and permits a straightforward integration of the available experimental information. By integrating the available knowledge, we investigated the effects of combined inhibition of signalling pathways. Through selective knockout or inhibition of the network components, we show that the interaction between epidermal growth factor receptor (EGFR) and S100A4 modulates the sensitivity of angiogenesis development to matrix metalloproteinases (MMPs) activity. We also show that, in cells that express high EGFR, MMP inhibitors are not expected to be useful in tumours if high activity of S100A4 is present.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 20

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy