SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Buntine Jack T.) "

Sökning: WFRF:(Buntine Jack T.)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Stockett, Mark H., et al. (författare)
  • Radiative cooling of carbon cluster anions C-2n+1(-) (n=3-5)
  • 2020
  • Ingår i: European Physical Journal D. - : Springer Science and Business Media LLC. - 1434-6060 .- 1434-6079. ; 74:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Radiative cooling of carbon cluster anions C-2n+1(-)(n = 3-5) is investigated using the cryogenic electrostatic ion storage ring DESIREE. Two different strategies are applied to infer infrared emission on slow (milliseconds to seconds) and ultraslow (seconds to minutes) timescales. Initial cooling of the ions over the millisecond timescale is probed indirectly by monitoring the decay in the yield of spontaneous neutralization by thermionic emission. The observed cooling rates are consistent with a statistical model of thermionic electron emission in competition with infrared photon emission due to vibrational de-excitation. Slower cooling over the seconds to minutes timescale associated with infrared emission from low-frequency vibrational modes is probed using time-dependent action spectroscopy. For C(9)(-)and C-11(-), cooling is evidenced by the time-evolution of the yield of photo-induced neutralization following resonant excitation of electronic transitions near the detachment threshold. The cross-section for resonant photo-excitation is at least two orders of magnitude greater than for direct photodetachment. In contrast, C(7)(-)lacks electronic transitions near the detachment threshold.
  •  
2.
  • Stockett, Mark H., et al. (författare)
  • Unimolecular fragmentation and radiative cooling of isolated PAH ions : A quantitative study
  • 2020
  • Ingår i: Journal of Chemical Physics. - : AIP Publishing. - 0021-9606 .- 1089-7690. ; 153:15
  • Tidskriftsartikel (refereegranskat)abstract
    • Time-resolved spontaneous and laser-induced unimolecular fragmentation of perylene cations (C20H12+) has been measured on timescales up to 2 s in a cryogenic electrostatic ion beam storage ring. We elaborate a quantitative model, which includes fragmentation in competition with radiative cooling via both vibrational and electronic (recurrent fluorescence) de-excitation. Excellent agreement with experimental results is found when sequential fragmentation of daughter ions co-stored with the parent perylene ions is included in the model. Based on the comparison of the model to experiment, we constrain the oscillator strength of the D-1 -> D-0 emissive electronic transition in perylene (f(RF) = 0.055 +/- 0.011), as well as the absolute absorption cross section of the D-5 <- D-0 excitation transition (sigma (abs) > 670 Mb). The former transition is responsible for the laser-induced and recurrent fluorescence of perylene, and the latter is the most prominent in the absorption spectrum. The vibrational cooling rate is found to be consistent with the simple harmonic cascade approximation. Quantitative experimental benchmarks of unimolecular processes in polycyclic aromatic hydrocarbon ions like perylene are important for refining astrochemical models.
  •  
3.
  • Bull, James N., et al. (författare)
  • Action spectroscopy of deprotomer-selected hydroxycinnamate anions
  • 2021
  • Ingår i: European Physical Journal D. - : Springer Science and Business Media LLC. - 1434-6060 .- 1434-6079. ; 75:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Tandem ion mobility mass spectrometry-coupled laser excitation is used to record photodetachment, photoisomerization and photodepletion action spectra for a series of deprotomer-selected hydroxycinnamate anions, including deprotonated caffeic, ferulic and sinapinic acids. This molecular series accounts for most hydroxycinnainic moieties found in nature. Phenoxide deprotomers for para and ortho structural isomers have similar photodetachment action spectra that span the 350-460nm range with the maximum response occurring between 420 and 440 nm. None of the phenoxide deprotomers showed evidence for E -> Z photoisomerization. In contrast, photoexcitation of the carboxylate deprotomers of caffeic and ferulic acids and the meta-phenoxide deprotomer of caffeic acid initiates intramolecular proton transfer to give the para-phenoxide deprotomer. Photoexcitation of the carboxylate deprotomer of sinapinic acid and ortho-coumaric acid does not result in intramolecular proton transfer, presumably due to substantial barriers for rearrangement. For deprotonated meta-coumaric acid, interconversion between the phenoxide and carboxylate deprotomers occurs in the ion mobility spectrometer drift region where the effective ion temperature is T-eff approximate to 299 K.
  •  
4.
  • Bull, James N., et al. (författare)
  • Photodetachment and photoreactions of substituted naphthalene anions in a tandem ion mobility spectrometer
  • 2019
  • Ingår i: Faraday discussions. - : Royal Society of Chemistry (RSC). - 1359-6640 .- 1364-5498. ; 217, s. 34-46
  • Tidskriftsartikel (refereegranskat)abstract
    • Substituted naphthalene anions (deprotonated 2-naphthol and 6-hydroxy-2-naphthoic acid) are spectroscopically probed in a tandem drift tube ion mobility spectrometer (IMS). Target anions are selected according to their drift speed through nitrogen buffer gas in the first IMS stage before being exposed to a pulse of tunable light that induces either photodissociation or electron photodetachment, which is conveniently monitored by scavenging the detached electrons with trace SF6 in the buffer gas. The photodetachment action spectrum of the 2-naphtholate anion exhibits a band system spanning 380-460 nm with a prominent series of peaks spaced by 440 cm(-1), commencing at 458.5 nm, and a set of weaker peaks near the electron detachment threshold corresponding to transitions to dipole-bound states. The two deprotomers of 6-hydroxy-2-naphthoic acid are separated and spectroscopically probed independently. The molecular anion formed from deprotonation of the hydroxy group gives rise to a photodetachment action spectrum similar to that of the 2-naphtholate anion with an onset at 470 nm and a maximum at 420 nm. Near the threshold, the photoreaction with SF6 is observed with displacement of an OH group by an F atom. In contrast, the anion formed from deprotonation of the carboxylic acid group gives rise to a photodissociation action spectrum, recorded on the CO2 loss channel, lying at much shorter wavelengths with an onset at 360 nm and maximum photoresponse at 325 nm.
  •  
5.
  • Jacovella, Ugo, et al. (författare)
  • Photo- and Collision-Induced Isomerization of a Charge-Tagged Norbornadiene-Quadricyclane System
  • 2020
  • Ingår i: Journal of Physical Chemistry Letters. - : American Chemical Society (ACS). - 1948-7185. ; 11:15, s. 6045-6050
  • Tidskriftsartikel (refereegranskat)abstract
    • Molecular photoswitches based on the norbornadiene-quadricylane (NBD-QC) couple have been proposed as key elements of molecular solar thermal energy storage schemes. To characterize the intrinsic properties of such systems, reversible isomerization of a charge-tagged NBD-QC carboxylate couple is investigated in a tandem ion mobility mass spectrometer, using light to induce intramolecular [2 + 2] cycloaddition of NBD carboxylate to form the QC carboxylate and driving the back reaction with molecular collisions. The NBD carboxylate photoisomerization action spectrum recorded by monitoring the QC carboxylate photoisomer extends from 290 to 360 nm with a maximum at 315 nm, and in the longer wavelength region resembles the NBD carboxylate absorption spectrum recorded in solution. Key structural and photochemical properties of the NBD-QC carboxylate system, including the gas-phase absorption spectrum and the energy storage capacity, are determined through computational studies using density functional theory.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy