SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Burgos Parra Erick) "

Sökning: WFRF:(Burgos Parra Erick)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Burgos Parra, Erick Omar, et al. (författare)
  • Holographic imaging of magnetization in a single layer nano-contact spin transfer oscillator
  • 2016
  • Ingår i: IEEE transactions on magnetics. - 0018-9464. ; 52:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Time-averaged images of the magnetization within single layer spin transfer oscillators have been obtained using the holography with extended reference by autocorrelation linear differential operator (HERALDO) technique. Transport measurements on a Pd(5)-Cu(20)-Ni81Fe19(7)-Cu(2)-Pd(2) (in nm) stack with a 100 nm diameter nano-contact reveal the presence of vortex dynamics. Magnetic images of the device for injected current values of 24mA and -24mA suggest that a vortex has been ejected from the nano-contact and become pinned at the edge of the region that is visible through the Au mask.
  •  
2.
  • Burgos-Parra, Erick, et al. (författare)
  • Time-resolved imaging of magnetization dynamics in double nanocontact spin torque vortex oscillator devices
  • 2019
  • Ingår i: Physical Review B. - : AMER PHYSICAL SOC. - 2469-9950 .- 2469-9969. ; 100:13
  • Tidskriftsartikel (refereegranskat)abstract
    • Double nanocontact (NC) spin transfer vortex oscillator devices, in which NCs of 100-nm diameter have center-to-center separation ranging from 200 to 1100 nm, have been studied by means of electrical measurements and time-resolved scanning Kerr microscopy (TRSKM). The NCs were positioned close to the edge of the top electrical contact so that the magnetization dynamics of the adjacent region could be probed optically. The electrical measurements showed different ranges of frequency operation for devices with different NC separations. For 900-nm NC separation, TRSKM showed magnetic contrast consistent with the formation of a magnetic vortex at each NC, while for 200-nm NC separation a lack of magnetic contrast near the NC region suggests that the magnetization dynamics occur closer to the NC and underneath the top contact. TRSKM also reveals the presence of additional localized dynamical features far from the NCs, which are not seen by electrical measurements; has not been reported previously for double NCs with different separations; and provides insight into how the dynamic state of the phase-locked oscillators is established and stabilized.
  •  
3.
  • Parra, Erick O. Burgos, et al. (författare)
  • Holographic Magnetic Imaging of Single-Layer Nanocontact Spin-Transfer Oscillators
  • 2016
  • Ingår i: IEEE transactions on magnetics. - : IEEE. - 0018-9464 .- 1941-0069. ; 52:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Time-averaged images of the magnetization within single-layer spin-transfer oscillators have been obtained using the holography with extended reference by autocorrelation linear differential operator technique. Transport measurements on a Pd(5)-Cu(20)-Ni81Fe19(7)-Cu(2)-Pd(2) (in nanometers) stack with a 100 nm diameter nanocontact reveal the presence of vortex dynamics. Magnetic images of the device for injected current values of 24 and -24 mA suggest that a vortex has been ejected from the nanocontact and become pinned at the edge of the region that is visible through the Au mask.
  •  
4.
  • Zhou Hagström, Nanna, 1993-, et al. (författare)
  • Megahertz-rate Ultrafast X-ray Scattering and Holographic Imaging at the European XFEL
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • The advent of X-ray free-electron lasers (XFELs) has revolutionized fundamental science, from atomic to condensed matter physics, from chemistry to biology, giving researchers access to X-rays with unprecedented brightness, coherence, and pulse duration. All XFEL facilities built until recently provided X-ray pulses at a relatively low repetition rate, with limited data statistics. Here, we present the results from the first megahertz repetition rate X-ray scattering experiments at the Spectroscopy and Coherent Scattering (SCS) instrument of the European XFEL. We illustrate the experimental capabilities that the SCS instrument offers, resulting from the operation at MHz repetition rates and the availability of the novel DSSC 2D imaging detector. Time-resolved magnetic X-ray scattering and holographic imaging experiments in solid state samples were chosen as representative examples, providing an ideal test-bed for operation at megahertz rates. Nevertheless, our results are relevant and applicable to any other non-destructive XFEL experiments in the soft X-ray range. 
  •  
5.
  • Zhou Hagström, Nanna, 1993-, et al. (författare)
  • Megahertz-rate ultrafast X-ray scattering and holographic imaging at the European XFEL
  • 2022
  • Ingår i: Journal of Synchrotron Radiation. - : International Union of Crystallography (IUCr). - 0909-0495 .- 1600-5775. ; 29, s. 1454-1464
  • Tidskriftsartikel (refereegranskat)abstract
    • The advent of X-ray free-electron lasers (XFELs) has revolutionized fundamental science, from atomic to condensed matter physics, from chemistry to biology, giving researchers access to X-rays with unprecedented brightness, coherence and pulse duration. All XFEL facilities built until recently provided X-ray pulses at a relatively low repetition rate, with limited data statistics. Here, results from the first megahertz-repetition-rate X-ray scattering experiments at the Spectroscopy and Coherent Scattering (SCS) instrument of the European XFEL are presented. The experimental capabilities that the SCS instrument offers, resulting from the operation at megahertz repetition rates and the availability of the novel DSSC 2D imaging detector, are illustrated. Time-resolved magnetic X-ray scattering and holographic imaging experiments in solid state samples were chosen as representative, providing an ideal test-bed for operation at megahertz rates. Our results are relevant and applicable to any other non-destructive XFEL experiments in the soft X-ray range.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy