SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Burgos Vargas R) "

Sökning: WFRF:(Burgos Vargas R)

  • Resultat 1-10 av 14
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Alvarez, E. M., et al. (författare)
  • The global burden of adolescent and young adult cancer in 2019: a systematic analysis for the Global Burden of Disease Study 2019
  • 2022
  • Ingår i: Lancet Oncology. - : Elsevier BV. - 1470-2045. ; 23:1, s. 27-52
  • Tidskriftsartikel (refereegranskat)abstract
    • Background In estimating the global burden of cancer, adolescents and young adults with cancer are often overlooked, despite being a distinct subgroup with unique epidemiology, clinical care needs, and societal impact. Comprehensive estimates of the global cancer burden in adolescents and young adults (aged 15-39 years) are lacking. To address this gap, we analysed results from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019, with a focus on the outcome of disability-adjusted life-years (DALYs), to inform global cancer control measures in adolescents and young adults. Methods Using the GBD 2019 methodology, international mortality data were collected from vital registration systems, verbal autopsies, and population-based cancer registry inputs modelled with mortality-to-incidence ratios (MIRs). Incidence was computed with mortality estimates and corresponding MIRs. Prevalence estimates were calculated using modelled survival and multiplied by disability weights to obtain years lived with disability (YLDs). Years of life lost (YLLs) were calculated as age-specific cancer deaths multiplied by the standard life expectancy at the age of death. The main outcome was DALYs (the sum of YLLs and YLDs). Estimates were presented globally and by Socio-demographic Index (SDI) quintiles (countries ranked and divided into five equal SDI groups), and all estimates were presented with corresponding 95% uncertainty intervals (UIs). For this analysis, we used the age range of 15-39 years to define adolescents and young adults. Findings There were 1.19 million (95% UI 1.11-1.28) incident cancer cases and 396 000 (370 000-425 000) deaths due to cancer among people aged 15-39 years worldwide in 2019. The highest age-standardised incidence rates occurred in high SDI (59.6 [54.5-65.7] per 100 000 person-years) and high-middle SDI countries (53.2 [48.8-57.9] per 100 000 person-years), while the highest age-standardised mortality rates were in low-middle SDI (14.2 [12.9-15.6] per 100 000 person-years) and middle SDI (13.6 [12.6-14.8] per 100 000 person-years) countries. In 2019, adolescent and young adult cancers contributed 23.5 million (21.9-25.2) DALYs to the global burden of disease, of which 2.7% (1.9-3.6) came from YLDs and 97.3% (96.4-98.1) from YLLs. Cancer was the fourth leading cause of death and tenth leading cause of DALYs in adolescents and young adults globally. Interpretation Adolescent and young adult cancers contributed substantially to the overall adolescent and young adult disease burden globally in 2019. These results provide new insights into the distribution and magnitude of the adolescent and young adult cancer burden around the world. With notable differences observed across SDI settings, these estimates can inform global and country-level cancer control efforts. Copyright (C) 2021 The Author(s). Published by Elsevier Ltd.
  •  
2.
  •  
3.
  •  
4.
  • Dieleman, J. L., et al. (författare)
  • Future and potential spending on health 2015-40 : Development assistance for health, and government, prepaid private, and out-of-pocket health spending in 184 countries
  • 2017
  • Ingår i: The Lancet. - : Lancet Publishing Group. - 0140-6736 .- 1474-547X. ; 389:10083, s. 2005-2030
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The amount of resources, particularly prepaid resources, available for health can affect access to health care and health outcomes. Although health spending tends to increase with economic development, tremendous variation exists among health financing systems. Estimates of future spending can be beneficial for policy makers and planners, and can identify financing gaps. In this study, we estimate future gross domestic product (GDP), all-sector government spending, and health spending disaggregated by source, and we compare expected future spending to potential future spending. Methods: We extracted GDP, government spending in 184 countries from 1980-2015, and health spend data from 1995-2014. We used a series of ensemble models to estimate future GDP, all-sector government spending, development assistance for health, and government, out-of-pocket, and prepaid private health spending through 2040. We used frontier analyses to identify patterns exhibited by the countries that dedicate the most funding to health, and used these frontiers to estimate potential health spending for each low-income or middle-income country. All estimates are inflation and purchasing power adjusted. Findings: We estimated that global spending on health will increase from US$9.21 trillion in 2014 to $24.24 trillion (uncertainty interval [UI] 20.47-29.72) in 2040. We expect per capita health spending to increase fastest in upper-middle-income countries, at 5.3% (UI 4.1-6.8) per year. This growth is driven by continued growth in GDP, government spending, and government health spending. Lower-middle income countries are expected to grow at 4.2% (3.8-4.9). High-income countries are expected to grow at 2.1% (UI 1.8-2.4) and low-income countries are expected to grow at 1.8% (1.0-2.8). Despite this growth, health spending per capita in low-income countries is expected to remain low, at $154 (UI 133-181) per capita in 2030 and $195 (157-258) per capita in 2040. Increases in national health spending to reach the level of the countries who spend the most on health, relative to their level of economic development, would mean $321 (157-258) per capita was available for health in 2040 in low-income countries. Interpretation: Health spending is associated with economic development but past trends and relationships suggest that spending will remain variable, and low in some low-resource settings. Policy change could lead to increased health spending, although for the poorest countries external support might remain essential. © The Author(s).
  •  
5.
  • Chang, A. Y., et al. (författare)
  • Past, present, and future of global health financing : A review of development assistance, government, out-of-pocket, and other private spending on health for 195 countries, 1995-2050
  • 2019
  • Ingår i: The Lancet. - : Lancet Publishing Group. - 0140-6736 .- 1474-547X. ; 393:10187, s. 2233-2260
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Comprehensive and comparable estimates of health spending in each country are a key input for health policy and planning, and are necessary to support the achievement of national and international health goals. Previous studies have tracked past and projected future health spending until 2040 and shown that, with economic development, countries tend to spend more on health per capita, with a decreasing share of spending from development assistance and out-of-pocket sources. We aimed to characterise the past, present, and predicted future of global health spending, with an emphasis on equity in spending across countries. Methods: We estimated domestic health spending for 195 countries and territories from 1995 to 2016, split into three categories-government, out-of-pocket, and prepaid private health spending-and estimated development assistance for health (DAH) from 1990 to 2018. We estimated future scenarios of health spending using an ensemble of linear mixed-effects models with time series specifications to project domestic health spending from 2017 through 2050 and DAH from 2019 through 2050. Data were extracted from a broad set of sources tracking health spending and revenue, and were standardised and converted to inflation-adjusted 2018 US dollars. Incomplete or low-quality data were modelled and uncertainty was estimated, leading to a complete data series of total, government, prepaid private, and out-of-pocket health spending, and DAH. Estimates are reported in 2018 US dollars, 2018 purchasing-power parity-adjusted dollars, and as a percentage of gross domestic product. We used demographic decomposition methods to assess a set of factors associated with changes in government health spending between 1995 and 2016 and to examine evidence to support the theory of the health financing transition. We projected two alternative future scenarios based on higher government health spending to assess the potential ability of governments to generate more resources for health. Findings: Between 1995 and 2016, health spending grew at a rate of 4.00% (95% uncertainty interval 3.89-4.12) annually, although it grew slower in per capita terms (2.72% [2.61-2.84]) and increased by less than $1 per capita over this period in 22 of 195 countries. The highest annual growth rates in per capita health spending were observed in upper-middle-income countries (5.55% [5.18-5.95]), mainly due to growth in government health spending, and in lower-middle-income countries (3.71% [3.10-4.34]), mainly from DAH. Health spending globally reached $8.0 trillion (7.8-8.1) in 2016 (comprising 8.6% [8.4-8.7] of the global economy and $10.3 trillion [10.1-10.6] in purchasing-power parity-adjusted dollars), with a per capita spending of US$5252 (5184-5319) in high-income countries, $491 (461-524) in upper-middle-income countries, $81 (74-89) in lower-middle-income countries, and $40 (38-43) in low-income countries. In 2016, 0.4% (0.3-0.4) of health spending globally was in low-income countries, despite these countries comprising 10.0% of the global population. In 2018, the largest proportion of DAH targeted HIV/AIDS ($9.5 billion, 24.3% of total DAH), although spending on other infectious diseases (excluding tuberculosis and malaria) grew fastest from 2010 to 2018 (6.27% per year). The leading sources of DAH were the USA and private philanthropy (excluding corporate donations and the Bill & Melinda Gates Foundation). For the first time, we included estimates of China’s contribution to DAH ($644.7 million in 2018). Globally, health spending is projected to increase to $15.0 trillion (14.0-16.0) by 2050 (reaching 9.4% [7.6-11.3] of the global economy and $21.3 trillion [19.8-23.1] in purchasing-power parity-adjusted dollars), but at a lower growth rate of 1.84% (1.68-2.02) annually, and with continuing disparities in spending between countries. In 2050, we estimate that 0.6% (0.6-0.7) of health spending will occur in currently low-income countries, despite these countries comprising an estimated 15.7% of the global population by 2050. The ratio between per capita health spending in high-income and low-income countries was 130.2 (122.9-136.9) in 2016 and is projected to remain at similar levels in 2050 (125.9 [113.7-138.1]). The decomposition analysis identified governments’ increased prioritisation of the health sector and economic development as the strongest factors associated with increases in government health spending globally. Future government health spending scenarios suggest that, with greater prioritisation of the health sector and increased government spending, health spending per capita could more than double, with greater impacts in countries that currently have the lowest levels of government health spending. Interpretation: Financing for global health has increased steadily over the past two decades and is projected to continue increasing in the future, although at a slower pace of growth and with persistent disparities in per-capita health spending between countries. Out-of-pocket spending is projected to remain substantial outside of high-income countries. Many low-income countries are expected to remain dependent on development assistance, although with greater government spending, larger investments in health are feasible. In the absence of sustained new investments in health, increasing efficiency in health spending is essential to meet global health targets. © 2019 The Author(s).
  •  
6.
  • Bursill, D., et al. (författare)
  • Gout, Hyperuricemia, and Crystal-Associated Disease Network Consensus Statement Regarding Labels and Definitions for Disease Elements in Gout
  • 2019
  • Ingår i: Arthritis Care & Research. - : Wiley. - 2151-464X. ; 71:3, s. 427-434
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective The language currently used to describe gout lacks standardization. The aim of this project was to develop a consensus statement on the labels and definitions used to describe the basic disease elements of gout. Methods Experts in gout (n = 130) were invited to participate in a Delphi exercise and face-to-face consensus meeting to reach consensus on the labeling and definitions for the basic disease elements of gout. Disease elements and labels in current use were derived from a content analysis of the contemporary medical literature, and the results of this analysis were used for item selection in the Delphi exercise and face-to-face consensus meeting. Results There were 51 respondents to the Delphi exercise and 30 attendees at the face-to-face meeting. Consensus agreement (>= 80%) was achieved for the labels of 8 disease elements through the Delphi exercise; the remaining 3 labels reached consensus agreement through the face-to-face consensus meeting. The agreed labels were monosodium urate crystals, urate, hyperuric(a)emia, tophus, subcutaneous tophus, gout flare, intercritical gout, chronic gouty arthritis, imaging evidence of monosodium urate crystal deposition, gouty bone erosion, and podagra. Participants at the face-to-face meeting achieved consensus agreement for the definitions of all 11 elements and a recommendation that the label "chronic gout" should not be used. Conclusion Consensus agreement was achieved for the labels and definitions of 11 elements representing the fundamental components of gout etiology, pathophysiology, and clinical presentation. The Gout, Hyperuricemia, and Crystal-Associated Disease Network recommends the use of these labels when describing the basic disease elements of gout.
  •  
7.
  • Gutierrez-Suarez, R., et al. (författare)
  • Health-related quality of life of patients with juvenile idiopathic arthritis coming from 3 different geographic areas. The PRINTO multinational quality of life cohort study
  • 2007
  • Ingår i: Rheumatology (Oxford). - : Oxford University Press (OUP). - 1462-0324 .- 1462-0332. ; 46:2, s. 314-320
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVES: To compare health-related quality of life (HRQL) and to identify clinical determinants for poor HRQL of patients with juvenile idiopathic arthritis (JIA) coming from three geographic areas.METHODS: The HRQL was assessed through the Child Health Questionnaire (CHQ). A total of 30 countries were included grouped in three geographic areas: 16 countries in Western Europe; 10 in Eastern Europe; and four in Latin America. Potential determinants of poor HRQL included demographic data, physician's and parent's global assessments, measures of joint inflammation, disability as measured by Childhood Health Assessment Questionnaire (CHAQ) and erythrocyte sedimentation rate. Poor HRQL was defined as a CHQ physical summary score (PhS) or psychosocial summary score (PsS) <2 S.D. from that of healthy children.RESULTS: A total of 3167 patients with JIA, younger than 18 yrs, were included in this study. The most affected health concepts (<2 S.D. from healthy children) that differentiate the three geographic areas include physical functioning, bodily pain/discomfort, global health, general health perception, change in health with respect to the previous year, self-esteem and family cohesion. Determinants for poor HRQL were similar across geographic areas with physical well-being mostly affected by the level of disability while the psychosocial well-being by the intensity of pain.CONCLUSION: We found that patients with JIA have a significant impairment of their HRQL compared with healthy peers, particularly in the physical domain. Disability and pain are the most important determinants of physical and psychosocial well-being irrespective of the geographic area of origin.
  •  
8.
  •  
9.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 14

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy