SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Buriyo A. S.) "

Sökning: WFRF:(Buriyo A. S.)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Tano, Stina A., et al. (författare)
  • Tropical seaweed beds as important habitats for juvenile fish
  • 2017
  • Ingår i: Marine and Freshwater Research. - 1323-1650 .- 1448-6059. ; 68:10, s. 1921-1934
  • Tidskriftsartikel (refereegranskat)abstract
    • Seaweed beds within tropical seascapes have received little attention as potential fish habitat, despite other vegetated habitats, such as seagrass meadows and mangroves, commonly being recognised as important nurseries for numerous fish species. In addition, studies of vegetated habitats rarely investigate fish assemblages across different macrophyte communities. Therefore, the aim of the present study was to investigate the role of tropical seaweed beds as fish habitat, particularly for juvenile fish, by comparing their fish assemblages with those of closely situated seagrass beds. Fish assemblages were assessed by visual census in belt transects, where fish were identified and their length estimated, and habitat variables were estimated for each transect. The abundance of juvenile fish in seaweed beds was twice as high as that in seagrass meadows, whereas there was no difference in total, subadult or adult fish abundance. In addition, the abundance of commercially important and coral reef-associated juveniles was higher in seaweed beds, as was fish species richness. Fish assemblages differed between habitats, with siganids being more common in seagrass meadows and juvenile Labridae and Serranidae more common in seaweed beds. These results highlight that tropical seaweed beds are important juvenile fish habitats and underscore the need to widen the view of the shallow tropical seascape.
  •  
2.
  • Kalokora, O. J., et al. (författare)
  • An experimental assessment of algal calcification as a potential source of atmospheric CO2
  • 2020
  • Ingår i: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 15:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Marine vegetated ecosystems such as seagrass meadows are increasingly acknowledged as important carbon sinks based on their ability to capture and store atmospheric carbon dioxide, thereby contributing to climate change mitigation. Most studies on carbon storage in marine ecosystems have focused on organic carbon, leaving inorganic carbon processes such as calcification unaccounted for, despite of their critical role in the global carbon budget. This is probably because of uncertainties regarding the role of calcification in marine carbon budgets as either atmospheric CO2 source or sink. Here, we conducted a laboratory experiment to investigate the influence of a calcifying alga (Corallina officinalis L.) on seawater carbon content, using a non-calcifying alga (Ulva lactuca L.) as a control. In a first part, algae were incubated separately while measuring changes in seawater pH, total alkalinity (TA) and total dissolved inorganic carbon (DIC). The amount of carbon used in photosynthetic uptake and production of CaCO3 was then calculated. In a second, directly following, part the algae were removed and DIC levels were allowed to equilibrate with air until the pH stabilized and the loss of CO2 to air was calculated as the difference in total DIC from the start of part one, to the end of the second part. The results showed that C. officinalis caused a significant and persistent reduction in total dissolved inorganic carbon (DIC), TA and seawater pH, while no such permanent changes were caused by U. lactuca. These findings indicate that calcification can release a significant amount of CO2 to the atmosphere and thereby possibly counteract the carbon sequestration in marine vegetated ecosystems if this CO2 is not re-fixed in the system. Our research emphasises the importance of considering algal calcification in future assessments on carbon storage in coastal areas. © 2020 Kalokora et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
  •  
3.
  • Tano, Stina, et al. (författare)
  • Tropical seaweed beds are important habitats for mobile invertebrate epifauna
  • 2016
  • Ingår i: Estuarine, Coastal and Shelf Science. - : Elsevier BV. - 0272-7714 .- 1096-0015. ; 183, s. 1-12
  • Tidskriftsartikel (refereegranskat)abstract
    • Marine macrophyte habitats in temperate regions provide productive habitats for numerous organisms, with their abundant and diverse invertebrate epifaunal assemblages constituting important linkages between benthic primary production and higher trophic levels. While it is commonly also recognized that certain vegetated habitats in the tropics, such as seagrass meadows, can harbour diverse epifaunal assemblages and may constitute important feeding grounds to fish, little is known about the epifaunal assemblages associated with tropical seaweed beds. We investigated the abundance, biomass and taxon richness of the mobile epifaunal community (>= 1 mm) of tropical East African seaweed beds, as well as the abundance of invertivorous fishes, and compared it with that of closely situated seagrass meadows, to establish the ecological role of seaweed beds as habitat for epifauna as well as potential feeding grounds for fish. The results showed that seaweed beds had a higher abundance of mobile epifauna (mean SD: 10,600 +/- 6000 vs 3700 +/- 2800 per m(2)) than seagrass meadows, as well as a higher invertebrate biomass (35.9 +/- 46.8 vs 1.9 +/- 2.1 g per m(2)) and taxon richness (32.7 +/- 11.8 vs 19.1 +/- 6.3 taxa per sample), despite having a lower macrophyte biomass. Additionally, the high abundance of invertivorous fishes found in seaweed beds indicates that they act as important feeding grounds to several fish species in the region.
  •  
4.
  • Eggertsen, Maria, 1981-, et al. (författare)
  • Different environmental variables predict distribution and cover of the introduced red seaweed Eucheuma denticulatum in two geographical locations
  • 2021
  • Ingår i: Biological Invasions. - : Springer. - 1387-3547 .- 1573-1464. ; 23, s. 1049-1067
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study we examined abiotic and biotic factors that could potentially influence the presence of a non-indigenous seaweed, Eucheuma denticulatum, in two locations, one outside (Kane’ohe Bay, Hawai’i, USA) and one within (Mafia Island, Tanzania) its natural geographical range. We hypothesized that the availability of hard substrate and the amount of wave exposure would explain distribution patterns, and that higher abundance of herbivorous fishes in Tanzania would exert stronger top–down control than in Hawai’i. To address these hypotheses, we surveyed E. denticulatum in sites subjected to different environmental conditions and used generalized linear mixed models (GLMM) to identify predictors of E. denticulatum presence. We also estimated grazing intensity on E. denticulatum by surveying the type and the amount of grazing scars. Finally, we used molecular tools to distinguish between indigenous and non-indigenous strains of E. denticulatum on Mafia Island. In Kane’ohe Bay, the likelihood of finding E. denticulatum increased with wave exposure, whereas on Mafia Island, the likelihood increased with cover of coral rubble, and decreased with distance from areas of introduction (AOI), but this decrease was less pronounced in the presence of coral rubble. Grazing intensity was higher in Kane’ohe Bay than on Mafia Island. However, we still suggest that efforts to reduce non-indigenous E. denticulatum should include protection of important herbivores in both sites because of the high levels of grazing close to AOI. Moreover, we recommend that areas with hard substrate and high structural complexity should be avoided when farming non-indigenous strains of E. denticulatum.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy