SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Burls N. J.) "

Sökning: WFRF:(Burls N. J.)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Steinthorsdottir, Margret, et al. (författare)
  • The Miocene: The Future of the Past
  • 2021
  • Ingår i: Paleoceanography and Paleoclimatology. - : American Geophysical Union (AGU). - 2572-4517 .- 2572-4525. ; 36:4
  • Tidskriftsartikel (refereegranskat)abstract
    • The Miocene epoch (23.03–5.33 Ma) was a time interval of global warmth, relative to today. Continental configurations and mountain topography transitioned toward modern conditions, and many flora and fauna evolved into the same taxa that exist today. Miocene climate was dynamic: long periods of early and late glaciation bracketed a ∼2 Myr greenhouse interval—the Miocene Climatic Optimum (MCO). Floras, faunas, ice sheets, precipitation, pCO2, and ocean and atmospheric circulation mostly (but not ubiquitously) covaried with these large changes in climate. With higher temperatures and moderately higher pCO2 (∼400–600 ppm), the MCO has been suggested as a particularly appropriate analog for future climate scenarios, and for assessing the predictive accuracy of numerical climate models—the same models that are used to simulate future climate. Yet, Miocene conditions have proved difficult to reconcile with models. This implies either missing positive feedbacks in the models, a lack of knowledge of past climate forcings, or the need for re-interpretation of proxies, which might mitigate the model-data discrepancy. Our understanding of Miocene climatic, biogeochemical, and oceanic changes on broad spatial and temporal scales is still developing. New records documenting the physical, chemical, and biotic aspects of the Earth system are emerging, and together provide a more comprehensive understanding of this important time interval. Here, we review the state-of-the-art in Miocene climate, ocean circulation, biogeochemical cycling, ice sheet dynamics, and biotic adaptation research as inferred through proxy observations and modeling studies.
  •  
2.
  • Steinthorsdottir, Margret, et al. (författare)
  • The Miocene : the Future of the Past
  • 2021
  • Ingår i: Paleoceanography and Paleoclimatology. - : American Geophysical Union (AGU). - 2572-4517 .- 2572-4525. ; 36:4
  • Tidskriftsartikel (refereegranskat)abstract
    • The Miocene epoch (23.03–5.33 Ma) was a time interval of global warmth, relative to today. Continental configurations and mountain topography transitioned towards modern conditions, and many flora and fauna evolved into the same taxa that exist today. Miocene climate was dynamic: long periods of early and late glaciation bracketed a ∼2 Myr greenhouse interval – the Miocene Climatic Optimum (MCO). Floras, faunas, ice sheets, precipitation, pCO2, and ocean and atmospheric circulation mostly (but not ubiquitously) covaried with these large changes in climate. With higher temperatures and moderately higher pCO2 (∼400–600 ppm), the MCO has been suggested as a particularly appropriate analogue for future climate scenarios, and for assessing the predictive accuracy of numerical climate models – the same models that are used to simulate future climate. Yet, Miocene conditions have proved difficult to reconcile with models. This implies either missing positive feedbacks in the models, a lack of knowledge of past climate forcings, or the need for re‐interpretation of proxies, which might mitigate the model‐data discrepancy. Our understanding of Miocene climatic, biogeochemical, and oceanic changes on broad spatial and temporal scales is still developing. New records documenting the physical, chemical, and biotic aspects of the Earth system are emerging, and together provide a more comprehensive understanding of this important time interval. Here we review the state‐of‐the‐art in Miocene climate, ocean circulation, biogeochemical cycling, ice sheet dynamics, and biotic adaptation research as inferred through proxy observations and modelling studies.
  •  
3.
  • Acosta, R. P., et al. (författare)
  • A Model-Data Comparison of the Hydrological Response to Miocene Warmth : Leveraging the MioMIP1 Opportunistic Multi-Model Ensemble
  • 2024
  • Ingår i: Paleoceanography and Paleoclimatology. - 2572-4517 .- 2572-4525. ; 39:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The Miocene (23.03-5.33 Ma) is recognized as a period with close to modern-day paleogeography, yet a much warmer climate. With large uncertainties in future hydroclimate projections, Miocene conditions illustrate a potential future analog for the Earth system. A recent opportunistic Miocene Model Intercomparison Project 1 (MioMIP1) focused on synthesizing published Miocene climate simulations and comparing them with available temperature reconstructions. Here, we build on this effort by analyzing the hydrological cycle response to Miocene forcings across early-to-middle (E2MMIO; 20.03-11.6 Ma) and middle-to-late Miocene (M2LMIO; 11.5-5.33 Ma) simulations with CO2 concentrations ranging from 200 to 850 ppm and providing a model-data comparison against available precipitation reconstructions. We find global precipitation increases by similar to 2.1 and 2.3% per degree of warming for E2MMIO and M2LMIO simulations, respectively. Models generally agree on a wetter than modern-day tropics; mid and high-latitude, however, do not agree on the sign of subtropical precipitation changes with warming. Global monsoon analysis suggests most monsoon regions, except the North American Monsoon, experience higher precipitation rates under warmer conditions. Model-data comparison shows that mean annual precipitation is underestimated by the models regardless of CO2 concentration, particularly in the mid- to high-latitudes. This suggests that the models may not be (a) resolving key processes driving the hydrological cycle response to Miocene boundary conditions and/or (b) other boundary conditions or processes not considered here are critical to reproducing Miocene hydroclimate. This study highlights the challenges in modeling and reconstructing the Miocene hydrological cycle and serves as a baseline for future coordinated MioMIP efforts. This study looks at Earth's hydrological cycle during the Miocene (23-5 million years ago). During this period, the Earth's climate was 3-7 degrees C warmer than today, with carbon dioxide (CO2) estimates ranging between 400 and 850 ppm. Understanding how the hydrological cycle responded during warmer climate conditions can give us insight into what might happen as the Earth gets warmer. We analyzed a suite of Miocene paleoclimate simulations with different CO2 concentrations in the atmosphere and compared them against fossil plant data, which gives an estimate of the average annual rainfall during the period. We found that during the Miocene global rainfall increased by about 2.1%-2.3% for each degree of warming. The models agree that the tropics, mid- and high-latitude, became wetter than they are today but have lower agreement on whether subtropical areas got wetter or drier as they warmed. Compared to proxies, models consistently underestimated how much rain fell in a year, especially in the mid- to high-latitude. This illustrates the challenges in reconstructing the Miocene's hydrological cycle and suggests that the models might not fully capture the range of uncertainties associated with changes in the hydrological cycle due to warming or other factors that differentiated the Miocene. A multi-model comparison of the hydrological cycle in early-to-middle and middle-to-late Miocene simulations is conductedModels generally agree on wetter than modern tropics, middle and high latitudes, but not on the sign of subtropical precipitation changesModel-data comparison shows mean annual precipitation is underestimated by the models, particularly in the mid- to high-latitudes
  •  
4.
  • Burls, N. J., et al. (författare)
  • Simulating Miocene Warmth : Insights From an Opportunistic Multi-Model Ensemble (MioMIP1)
  • 2021
  • Ingår i: Paleoceanography and Paleoclimatology. - 2572-4517 .- 2572-4525. ; 36:5
  • Tidskriftsartikel (refereegranskat)abstract
    • The Miocene epoch, spanning 23.03-5.33 Ma, was a dynamic climate of sustained, polar amplified warmth. Miocene atmospheric CO2 concentrations are typically reconstructed between 300 and 600 ppm and were potentially higher during the Miocene Climatic Optimum (16.75-14.5 Ma). With surface temperature reconstructions pointing to substantial midlatitude and polar warmth, it is unclear what processes maintained the much weaker-than-modern equator-to-pole temperature difference. Here, we synthesize several Miocene climate modeling efforts together with available terrestrial and ocean surface temperature reconstructions. We evaluate the range of model-data agreement, highlight robust mechanisms operating across Miocene modeling efforts and regions where differences across experiments result in a large spread in warming responses. Prescribed CO2 is the primary factor controlling global warming across the ensemble. On average, elements other than CO2, such as Miocene paleogeography and ice sheets, raise global mean temperature by similar to 2 degrees C, with the spread in warming under a given CO2 concentration (due to a combination of the spread in imposed boundary conditions and climate feedback strengths) equivalent to similar to 1.2 times a CO2 doubling. This study uses an ensemble of opportunity: models, boundary conditions, and reference data sets represent the state-of-art for the Miocene, but are inhomogeneous and not ideal for a formal intermodel comparison effort. Acknowledging this caveat, this study is nevertheless the first Miocene multi-model, multi-proxy comparison attempted so far. This study serves to take stock of the current progress toward simulating Miocene warmth while isolating remaining challenges that may be well served by community-led efforts to coordinate modeling and data activities within a common analytical framework.
  •  
5.
  • Inglis, Gordon N., et al. (författare)
  • Global mean surface temperature and climate sensitivity of the early Eocene Climatic Optimum (EECO), Paleocene-Eocene Thermal Maximum (PETM), and latest Paleocene
  • 2020
  • Ingår i: Climate of the Past. - : Copernicus GmbH. - 1814-9324 .- 1814-9332. ; 16:5, s. 1953-1968
  • Tidskriftsartikel (refereegranskat)abstract
    • Accurate estimates of past global mean surface temperature (GMST) help to contextualise future climate change and are required to estimate the sensitivity of the climate system to CO2 forcing through Earth's history. Previous GMST estimates for the latest Paleocene and early Eocene (similar to 57 to 48 million years ago) span a wide range (similar to 9 to 23 degrees C higher than pre-industrial) and prevent an accurate assessment of climate sensitivity during this extreme greenhouse climate interval. Using the most recent data compilations, we employ a multi-method experimen- tal framework to calculate GMST during the three DeepMIP target intervals: (1) the latest Paleocene (similar to 57 Ma), (2) the Paleocene-Eocene Thermal Maximum (PETM; 56 Ma), and (3) the early Eocene Climatic Optimum (EECO; 53.3 to 49.1 Ma). Using six different methodologies, we find that the average GMST estimate (66% confidence) during the latest Paleocene, PETM, and EECO was 26.3 degrees C (22.3 to 28.3 degrees C), 31.6 degrees C (27.2 to 34.5 degrees C), and 27.0 degrees C (23.2 to 29.7 degrees C), respectively. GMST estimates from the EECO are similar to 10 to 16 degrees C warmer than pre-industrial, higher than the estimate given by the Intergovernmental Panel on Climate Change (IPCC) 5th Assessment Report (9 to 14 degrees C higher than pre-industrial). Leveraging the large signal associated with these extreme warm climates, we combine estimates of GMST and CO2 from the latest Paleocene, PETM, and EECO to calculate gross estimates of the average climate sensitivity between the early Paleogene and today. We demonstrate that bulk equilibrium climate sensitivity (ECS; 66% confidence) during the latest Paleocene, PETM, and EECO is 4.5 degrees C (2.4 to 6.8 degrees C), 3.6 degrees C (2.3 to 4.7 degrees C), and 3.1 degrees C (1.8 to 4.4 degrees C) per doubling of CO2. These values are generally similar to those assessed by the IPCC (1.5 to 4.5 ffiC per doubling CO2) but appear incompatible with low ECS values (< 1 :5 per doubling CO2).
  •  
6.
  • Tierney, Jessica E., et al. (författare)
  • Past climates inform our future
  • 2020
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 370:6517
  • Forskningsöversikt (refereegranskat)abstract
    • As the world warms, there is a profound need to improve projections of climate change. Although the latest Earth system models offer an unprecedented number of features, fundamental uncertainties continue to cloud our view of the future. Past climates provide the only opportunity to observe how the Earth system responds to high carbon dioxide, underlining a fundamental role for paleoclimatology in constraining future climate change. Here, we review the relevancy of paleoclimate information for climate prediction and discuss the prospects for emerging methodologies to further insights gained from past climates. Advances in proxy methods and interpretations pave the way for the use of past climates for model evaluation—a practice that we argue should be widely adopted.
  •  
7.
  • Cramwinckel, Margot J., et al. (författare)
  • Global and Zonal-Mean Hydrological Response to Early Eocene Warmth
  • 2023
  • Ingår i: Paleoceanography and Paleoclimatology. - 2572-4517 .- 2572-4525. ; 38:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Earth's hydrological cycle is expected to intensify in response to global warming, with a wet-gets-wetter, dry-gets-drier response anticipated over the ocean. Subtropical regions (similar to 15 degrees-30 degrees N/S) are predicted to become drier, yet proxy evidence from past warm climates suggests these regions may be characterized by wetter conditions. Here we use an integrated data-modeling approach to reconstruct global and zonal-mean rainfall patterns during the early Eocene (similar to 56-48 million years ago). The Deep-Time Model Intercomparison Project (DeepMIP) model ensemble indicates that the mid-(30 degrees-60 degrees N/S) and high-latitudes (>60 degrees N/S) are characterized by a thermodynamically dominated hydrological response to warming and overall wetter conditions. The tropical band (0 degrees-15 degrees N/S) is also characterized by wetter conditions, with several DeepMIP models simulating narrowing of the Inter-Tropical Convergence Zone. However, the latter is not evident from the proxy data. The subtropics are characterized by negative precipitation-evaporation anomalies (i.e., drier conditions) in the DeepMIP models, but there is surprisingly large inter-model variability in mean annual precipitation (MAP). Intriguingly, we find that models with weaker meridional temperature gradients (e.g., CESM, GFDL) are characterized by a reduction in subtropical moisture divergence, leading to an increase in MAP. These model simulations agree more closely with our new proxy-derived precipitation reconstructions and other key climate metrics and imply that the early Eocene was characterized by reduced subtropical moisture divergence. If the meridional temperature gradient was even weaker than suggested by those DeepMIP models, circulation-induced changes may have outcompeted thermodynamic changes, leading to wetter subtropics. This highlights the importance of accurately reconstructing zonal temperature gradients when reconstructing past rainfall patterns. As the world warms, the atmosphere is able to hold more moisture however, this moisture will not fall evenly across the globe. Some regions are expected to become wetter, whereas other regions will become drier. This is the basis of the familiar paradigm wet-gets-wetter, dry-gets-drier and is largely supported by future model projections. However, evidence from the geological record contradicts this hypothesis and suggests that a warmer world could be characterized by wetter (rather than drier) subtropics. Here, we use an integrated data-modeling approach to investigate the hydrological response to warming during an ancient warm interval (the early Eocene, 56-48 million years ago). We show that models with weaker latitudinal temperature gradients are characterized by a reduction in subtropical moisture divergence. However, this was not sufficient to induce subtropical wetting. If the meridional temperature gradient was weaker than suggested by the models, circulation-induced changes may have lead to wetter subtropics. This work shows that the latitudinal temperature gradient is a key factor that influences hydroclimate in the subtropics, especially in past warm climates.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy