SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Burls Natalie J.) "

Sökning: WFRF:(Burls Natalie J.)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Han, Zixuan, et al. (författare)
  • Evaluating the large-scale hydrological cycle response within the Pliocene Model Intercomparison Project Phase 2 (PlioMIP2) ensemble
  • 2021
  • Ingår i: Climate of the Past. - : Copernicus GmbH. - 1814-9324 .- 1814-9332. ; 17:6, s. 2537-2558
  • Tidskriftsartikel (refereegranskat)abstract
    • The mid-Pliocene (∼3 Ma) is one of the most recent warm periods with high CO2 concentrations in the atmosphere and resulting high temperatures, and it is often cited as an analog for near-term future climate change. Here, we apply a moisture budget analysis to investigate the response of the large-scale hydrological cycle at low latitudes within a 13-model ensemble from the Pliocene Model Intercomparison Project Phase 2 (PlioMIP2). The results show that increased atmospheric moisture content within the mid-Pliocene ensemble (due to the thermodynamic effect) results in wetter conditions over the deep tropics, i.e., the Pacific intertropical convergence zone (ITCZ) and the Maritime Continent, and drier conditions over the subtropics. Note that the dynamic effect plays a more important role than the thermodynamic effect in regional precipitation minus evaporation (PmE) changes (i.e., northward ITCZ shift and wetter northern Indian Ocean). The thermodynamic effect is offset to some extent by a dynamic effect involving a northward shift of the Hadley circulation that dries the deep tropics and moistens the subtropics in the Northern Hemisphere (i.e., the subtropical Pacific). From the perspective of Earth's energy budget, the enhanced southward cross-equatorial atmospheric transport (0.22 PW), induced by the hemispheric asymmetries of the atmospheric energy, favors an approximately 1∘ northward shift of the ITCZ. The shift of the ITCZ reorganizes atmospheric circulation, favoring a northward shift of the Hadley circulation. In addition, the Walker circulation consistently shifts westward within PlioMIP2 models, leading to wetter conditions over the northern Indian Ocean. The PlioMIP2 ensemble highlights that an imbalance of interhemispheric atmospheric energy during the mid-Pliocene could have led to changes in the dynamic effect, offsetting the thermodynamic effect and, hence, altering mid-Pliocene hydroclimate.
  •  
2.
  • Inglis, Gordon N., et al. (författare)
  • Global mean surface temperature and climate sensitivity of the early Eocene Climatic Optimum (EECO), Paleocene-Eocene Thermal Maximum (PETM), and latest Paleocene
  • 2020
  • Ingår i: Climate of the Past. - : Copernicus GmbH. - 1814-9324 .- 1814-9332. ; 16:5, s. 1953-1968
  • Tidskriftsartikel (refereegranskat)abstract
    • Accurate estimates of past global mean surface temperature (GMST) help to contextualise future climate change and are required to estimate the sensitivity of the climate system to CO2 forcing through Earth's history. Previous GMST estimates for the latest Paleocene and early Eocene (similar to 57 to 48 million years ago) span a wide range (similar to 9 to 23 degrees C higher than pre-industrial) and prevent an accurate assessment of climate sensitivity during this extreme greenhouse climate interval. Using the most recent data compilations, we employ a multi-method experimen- tal framework to calculate GMST during the three DeepMIP target intervals: (1) the latest Paleocene (similar to 57 Ma), (2) the Paleocene-Eocene Thermal Maximum (PETM; 56 Ma), and (3) the early Eocene Climatic Optimum (EECO; 53.3 to 49.1 Ma). Using six different methodologies, we find that the average GMST estimate (66% confidence) during the latest Paleocene, PETM, and EECO was 26.3 degrees C (22.3 to 28.3 degrees C), 31.6 degrees C (27.2 to 34.5 degrees C), and 27.0 degrees C (23.2 to 29.7 degrees C), respectively. GMST estimates from the EECO are similar to 10 to 16 degrees C warmer than pre-industrial, higher than the estimate given by the Intergovernmental Panel on Climate Change (IPCC) 5th Assessment Report (9 to 14 degrees C higher than pre-industrial). Leveraging the large signal associated with these extreme warm climates, we combine estimates of GMST and CO2 from the latest Paleocene, PETM, and EECO to calculate gross estimates of the average climate sensitivity between the early Paleogene and today. We demonstrate that bulk equilibrium climate sensitivity (ECS; 66% confidence) during the latest Paleocene, PETM, and EECO is 4.5 degrees C (2.4 to 6.8 degrees C), 3.6 degrees C (2.3 to 4.7 degrees C), and 3.1 degrees C (1.8 to 4.4 degrees C) per doubling of CO2. These values are generally similar to those assessed by the IPCC (1.5 to 4.5 ffiC per doubling CO2) but appear incompatible with low ECS values (< 1 :5 per doubling CO2).
  •  
3.
  • Tierney, Jessica E., et al. (författare)
  • Past climates inform our future
  • 2020
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 370:6517
  • Forskningsöversikt (refereegranskat)abstract
    • As the world warms, there is a profound need to improve projections of climate change. Although the latest Earth system models offer an unprecedented number of features, fundamental uncertainties continue to cloud our view of the future. Past climates provide the only opportunity to observe how the Earth system responds to high carbon dioxide, underlining a fundamental role for paleoclimatology in constraining future climate change. Here, we review the relevancy of paleoclimate information for climate prediction and discuss the prospects for emerging methodologies to further insights gained from past climates. Advances in proxy methods and interpretations pave the way for the use of past climates for model evaluation—a practice that we argue should be widely adopted.
  •  
4.
  • Cramwinckel, Margot J., et al. (författare)
  • Global and Zonal-Mean Hydrological Response to Early Eocene Warmth
  • 2023
  • Ingår i: Paleoceanography and Paleoclimatology. - 2572-4517 .- 2572-4525. ; 38:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Earth's hydrological cycle is expected to intensify in response to global warming, with a wet-gets-wetter, dry-gets-drier response anticipated over the ocean. Subtropical regions (similar to 15 degrees-30 degrees N/S) are predicted to become drier, yet proxy evidence from past warm climates suggests these regions may be characterized by wetter conditions. Here we use an integrated data-modeling approach to reconstruct global and zonal-mean rainfall patterns during the early Eocene (similar to 56-48 million years ago). The Deep-Time Model Intercomparison Project (DeepMIP) model ensemble indicates that the mid-(30 degrees-60 degrees N/S) and high-latitudes (>60 degrees N/S) are characterized by a thermodynamically dominated hydrological response to warming and overall wetter conditions. The tropical band (0 degrees-15 degrees N/S) is also characterized by wetter conditions, with several DeepMIP models simulating narrowing of the Inter-Tropical Convergence Zone. However, the latter is not evident from the proxy data. The subtropics are characterized by negative precipitation-evaporation anomalies (i.e., drier conditions) in the DeepMIP models, but there is surprisingly large inter-model variability in mean annual precipitation (MAP). Intriguingly, we find that models with weaker meridional temperature gradients (e.g., CESM, GFDL) are characterized by a reduction in subtropical moisture divergence, leading to an increase in MAP. These model simulations agree more closely with our new proxy-derived precipitation reconstructions and other key climate metrics and imply that the early Eocene was characterized by reduced subtropical moisture divergence. If the meridional temperature gradient was even weaker than suggested by those DeepMIP models, circulation-induced changes may have outcompeted thermodynamic changes, leading to wetter subtropics. This highlights the importance of accurately reconstructing zonal temperature gradients when reconstructing past rainfall patterns. As the world warms, the atmosphere is able to hold more moisture however, this moisture will not fall evenly across the globe. Some regions are expected to become wetter, whereas other regions will become drier. This is the basis of the familiar paradigm wet-gets-wetter, dry-gets-drier and is largely supported by future model projections. However, evidence from the geological record contradicts this hypothesis and suggests that a warmer world could be characterized by wetter (rather than drier) subtropics. Here, we use an integrated data-modeling approach to investigate the hydrological response to warming during an ancient warm interval (the early Eocene, 56-48 million years ago). We show that models with weaker latitudinal temperature gradients are characterized by a reduction in subtropical moisture divergence. However, this was not sufficient to induce subtropical wetting. If the meridional temperature gradient was weaker than suggested by the models, circulation-induced changes may have lead to wetter subtropics. This work shows that the latitudinal temperature gradient is a key factor that influences hydroclimate in the subtropics, especially in past warm climates.
  •  
5.
  • de Boer, Agatha M., et al. (författare)
  • The Impact of Southern Ocean Topographic Barriers on the Ocean Circulation and the Overlying Atmosphere
  • 2022
  • Ingår i: Journal of Climate. - 0894-8755 .- 1520-0442. ; 35:18, s. 5805-5821
  • Tidskriftsartikel (refereegranskat)abstract
    • Southern Ocean bathymetry constrains the path of the Antarctic Circumpolar Current (ACC), but the bathymetric influence on the coupled ocean–atmosphere system is poorly understood. Here, we investigate this impact by respectively flattening large topographic barriers around the Kerguelen Plateau, Campbell Plateau, Mid-Atlantic Ridge, and Drake Passage in four simulations in a coupled climate model. The barriers impact both the wind and buoyancy forcing of the ACC transport, which increases by between 4% and 14% when barriers are removed individually and by 56% when all barriers are removed simultaneously. The removal of Kerguelen Plateau bathymetry increases convection south of the plateau and the removal of Drake Passage bathymetry reduces convection upstream in the Ross Sea. When the barriers are removed, zonal flattening of the currents leads to sea surface temperature (SST) anomalies that strongly correlate to precipitation anomalies, with correlation coefficients ranging between r = 0.92 and r = 0.97 in the four experiments. The SST anomalies correlate to the surface winds too in some locations. However, they also generate circumpolar waves of sea level pressure (SLP) anomalies, which induce remote wind speed changes that are unconnected to the underlying SST field. The meridional variability in the wind stress curl contours over the Mid-Atlantic Ridge, the Kerguelen Plateau, and the Campbell Plateau disappears when these barriers are removed, confirming the impact of bathymetry on surface winds. However, bathymetry-induced wind changes are too small to affect the overall wave-3 asymmetry in the Southern Hemisphere westerlies. Removal of Southern Hemisphere orography is also inconsequential to the wave-3 pattern.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy