SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Burza Matthias) "

Sökning: WFRF:(Burza Matthias)

  • Resultat 1-10 av 26
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Andreev, N. E., et al. (författare)
  • Analysis of laser wakefield dynamics in capillary tubes
  • 2010
  • Ingår i: New Journal of Physics. - : IOP Publishing. - 1367-2630. ; 12
  • Tidskriftsartikel (refereegranskat)abstract
    • A general approach to the modifications of the spectrum of a laser pulse interacting with matter is elaborated and used for spectral diagnostics of laser wakefield generation in guiding structures. Analytical predictions of the laser frequency red shift due to the wakefield excited in a capillary waveguide are confirmed by self-consistent modeling results. The role of ionization blue shift, and nonlinear laser pulse and wakefield dynamics on the spectrum modification, is analyzed for recent experiments on plasma wave excitation by an intense laser pulse guided in hydrogen-filled glass capillary tubes up to 8 cm long. The dependence of the spectral frequency shift, measured as a function of filling pressure, capillary tube length and incident laser energy, is in excellent agreement with the simulation results, and the associated longitudinal accelerating field is in the range 1-10 GV m(-1).
  •  
2.
  • Burza, Matthias, et al. (författare)
  • Dispersion and monochromatization of x-rays using a beryllium prism
  • 2015
  • Ingår i: Optics Express. - 1094-4087. ; 23:2, s. 620-627
  • Tidskriftsartikel (refereegranskat)abstract
    • We demonstrate experimentally and numerically that an x-ray prism made of beryllium can be used to disperse and monochromatize x-rays. A polished beryllium cuboid was employed as refractive and dispersive optics. The results of a proof-of-principle experiment and methods of performance optimization are presented. The spatial separation of undulator harmonics and their subsequent selection using a slit are described. A numerical study, assuming realistic beam and beamline parameters, suggests that undulator harmonics can be spatially separated in the range from 3 keV to beyond 20 keV, while maintaining throughput above 50%. Refractive optics is particularly suitable for low-repetition-rate sources such as free-electron lasers and other LINAC-based short-pulse sources. (C) 2015 Optical Society of America
  •  
3.
  • Burza, Matthias, et al. (författare)
  • Hollow microspheres as targets for staged laser-driven proton acceleration
  • 2011
  • Ingår i: New Journal of Physics. - : Institute of Physics Publishing (IOPP). - 1367-2630. ; 13, s. 013030-
  • Tidskriftsartikel (refereegranskat)abstract
    • A coated hollow core microsphere is introduced as a novel targetin ultra-intense laser–matter interaction experiments. In particular, it facilitates staged laser-driven proton acceleration by combining conventional target normal sheath acceleration (TNSA), power recycling of hot laterally spreading electrons and staging in a very simple and cheap target geometry. During TNSA of protons from one area of the sphere surface, laterally spreading hot electrons form a charge wave. Due to the spherical geometry, this wave refocuses on the opposite side of the sphere, where an opening has been laser micromachined.This leads to a strong transient charge separation field being set up there, which can post-accelerate those TNSA protons passing through the hole at the right time. Experimentally, the feasibility of using such targets is demonstrated. A redistribution is encountered in the experimental proton energy spectra, as predicted by particle-in-cell simulations and attributed to transient fields set up by oscillating currents on the sphere surface.
  •  
4.
  • Burza, Matthias (författare)
  • Laser-Driven Particle Acceleration - Improving Performance Through Smart Target Design
  • 2012
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Laser-driven particle acceleration makes use of sub-picosecond, pulsed, high-power laser systems, capable of producing intensities ~10^{19} W/cm^2 at the laser focus to form plasmas, and use ultra-relativistic and nonlinear dynamics to produce quasistatic acceleration fields. This allows electrons to be accelerated to ~100 MeV over sub-centimetre distances, while protons may be accelerated to the ~10 MeV regime. In addition, novel sources of x-ray radiation become available with these schemes. The topics covered in this thesis focus mainly on target normal sheath acceleration of protons in the overdense plasma regime and laser wakefield acceleration of electrons in the underdense regime. An experimental approach leads to novel acceleration concepts and investigations on properties of new target designs. In the overdense plasma regime, hollow microspheres were found to have the potential to enhance the conversion of laser energy into proton energy. The microscopic structure of the material used as target has impact on electron beam filamentation during electron transport through the target bulk. Long-range order was found to result in smoother beams of TNSA-produced protons as compared to amorphous structures. In addition it was demonstrated that short pulse (fs) laser-solid interactions produce magnetic fields, the strength of which can reach 10 kT, mimicking astrophysical conditions. In the underdense regime, it was found that when tailored appropriately, density ramps can provide means of dividing the laser wakefield acceleration process into four steps: nonlinear laser evolution, trapping, bunch transfer into the second bucket, and acceleration, resulting in beams with reduced relative energy spread and divergence compared to self-injection by a nonlinear plasma wave. It was further shown that capillaries can be used to improve efficiency by guiding and refocusing the laser light onto the central axis. Short bursts of soft x-rays were produced inside capillaries. Finally, the use of an asymmetric laser field at the focus facilitated off-axis electron injection into the accelerating phase of a plasma wake oscillation and enhanced x-ray emission.
  •  
5.
  • Burza, Matthias, et al. (författare)
  • Laser wakefield acceleration using wire produced double density ramps
  • 2013
  • Ingår i: Physical Review Special Topics. Accelerators and Beams. - 1098-4402. ; 16:1
  • Tidskriftsartikel (refereegranskat)abstract
    • A novel approach to implement and control electron injection into the accelerating phase of a laser wakefield accelerator is presented. It utilizes a wire, which is introduced into the flow of a supersonic gas jet creating shock waves and three regions of differing plasma electron density. If tailored appropriately, the laser plasma interaction takes place in three stages: Laser self-compression, electron injection, and acceleration in the second plasma wave period. Compared to self-injection by wave breaking of a nonlinear plasma wave in a constant density plasma, this scheme increases beam charge by up to 1 order of magnitude in the quasimonoenergetic regime. Electron acceleration in the second plasma wave period reduces electron beam divergence by approximate to 25%, and the localized injection at the density downramps results in spectra with less than a few percent relative spread. DOI: 10.1103/PhysRevSTAB.16.011301
  •  
6.
  •  
7.
  •  
8.
  • Coury, M., et al. (författare)
  • Influence of laser irradiated spot size on energetic electron injection and proton acceleration in foil targets
  • 2012
  • Ingår i: Applied Physics Letters. - : AIP Publishing. - 0003-6951 .- 1077-3118. ; 100:7
  • Tidskriftsartikel (refereegranskat)abstract
    • The influence of irradiated spot size on laser energy coupling to electrons, and subsequently to protons, in the interaction of intense laser pulses with foil targets is investigated experimentally. Proton acceleration is characterized for laser intensities ranging from 2 x 10(18) - 6 x 10(20) W/cm(2), by (1) variation of the laser energy for a fixed irradiated spot size, and (2) by variation of the spot size for a fixed energy. At a given laser pulse intensity, the maximum proton energy is higher under defocus illumination compared to tight focus and the results are explained in terms of geometrical changes to the hot electron injection. (C) 2012 American Institute of Physics. [doi:10.1063/1.3685615]
  •  
9.
  • Coury, M., et al. (författare)
  • Injection and transport properties of fast electrons in ultraintense laser-solid interactions
  • 2013
  • Ingår i: Physics of Plasmas. - : AIP Publishing. - 1070-664X .- 1089-7674. ; 20:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Fast electron injection and transport in solid foils irradiated by sub-picosecond-duration laser pulses with peak intensity equal to 4 x 10(20)W/cm(2) is investigated experimentally and via 3D simulations. The simulations are performed using a hybrid-particle-in-cell (PIC) code for a range of fast electron beam injection conditions, with and without inclusion of self-generated resistive magnetic fields. The resulting fast electron beam transport properties are used in rear-surface plasma expansion calculations to compare with measurements of proton acceleration, as a function of target thickness. An injection half-angle of similar to 50 degrees - 70 degrees is inferred, which is significantly larger than that derived from previous experiments under similar conditions. (C) 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4799726]
  •  
10.
  • Enquist, Henrik, et al. (författare)
  • FemtoMAX - An X-ray beamline for structural dynamics at the short-pulse facility of MAX IV
  • 2018
  • Ingår i: Journal of Synchrotron Radiation. - 0909-0495. ; 25:2, s. 570-579
  • Tidskriftsartikel (refereegranskat)abstract
    • The FemtoMAX beamline facilitates studies of the structural dynamics of materials. Such studies are of fundamental importance for key scientific problems related to programming materials using light, enabling new storage media and new manufacturing techniques, obtaining sustainable energy by mimicking photosynthesis, and gleaning insights into chemical and biological functional dynamics. The FemtoMAX beamline utilizes the MAX IV linear accelerator as an electron source. The photon bursts have a pulse length of 100fs, which is on the timescale of molecular vibrations, and have wavelengths matching interatomic distances (Å). The uniqueness of the beamline has called for special beamline components. This paper presents the beamline design including ultrasensitive X-ray beam-position monitors based on thin Ce:YAG screens, efficient harmonic separators and novel timing tools.The FemtoMAX beamline facilitates studies of the structural dynamics of materials on the femtosecond timescale. The first commissioning results are presented.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 26

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy