SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Burzynska Agnieszka Z.) "

Sökning: WFRF:(Burzynska Agnieszka Z.)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Burzynska, Agnieszka Z., et al. (författare)
  • A Scaffold for Efficiency in the Human Brain
  • 2013
  • Ingår i: Journal of Neuroscience. - 0270-6474 .- 1529-2401. ; 33:43, s. 17150-17159
  • Tidskriftsartikel (refereegranskat)abstract
    • The comprehensive relations between healthy adult human brain white matter(WM) microstructure and gray matter (GM) function, and their joint relations to cognitive performance, remain poorly understood. We investigated these associations in 27 younger and 28 older healthy adults by linking diffusion tensor imaging (DTI) with functional magnetic resonance imaging (fMRI) data collected during an n-back working memory task. We present a novel application of multivariate Partial Least Squares (PLS) analysis that permitted the simultaneous modeling of relations between WM integrity values from all major WM tracts and patterns of condition-related BOLD signal across all GM regions. Our results indicate that greater microstructural integrity of the major WM tracts was negatively related to condition-related blood oxygenation level-dependent (BOLD) signal in task-positive GM regions. This negative relationship suggests that better quality of structural connections allows for more efficient use of task-related GM processing resources. Individuals with more intact WM further showed greater BOLD signal increases in typical task-negative regions during fixation, and notably exhibited a balanced magnitude of BOLD response across task-positive and-negative states. Structure-function relations also predicted task performance, including accuracy and speed of responding. Finally, structure-function behavior relations reflected individual differences over and above chronological age. Our findings provide evidence for the role of WM microstructure as a scaffold for the context-relevant utilization of GM regions.
  •  
2.
  • Burzynska, Agnieszka Z., et al. (författare)
  • Cortical thickness is linked to executive functioning in adulthood and aging
  • 2012
  • Ingår i: Human Brain Mapping. - : Wiley. - 1065-9471 .- 1097-0193. ; 33:7, s. 1607-20
  • Tidskriftsartikel (refereegranskat)abstract
    • Executive functions that are dependent upon the frontal-parietal network decline considerably during the course of normal aging. To delineate neuroanatomical correlates of age-related executive impairment, we investigated the relation between cortical thickness and executive functioning in 73 younger (20-32 years) and 56 older (60-71 years) healthy adults. Executive functioning was assessed using the Wisconsin Card Sorting Test (WCST). Cortical thickness was measured at each location of the cortical mantle using surface-based segmentation procedures on high-resolution T1-weighted magnetic resonance images. For regions involved in WCST performance, such as the lateral prefrontal and parietal cortices, we found that thicker cortex was related to higher accuracy. Follow-up ROI-based analyses revealed that these associations were stronger in older than in younger adults. Moreover, among older adults, high and low performers differed in cortical thickness within regions generally linked to WCST performance. Our results indicate that the structural cortical correlates of executive functioning largely overlap with previously identified functional patterns. We conclude that structural preservation of relevant brain regions is associated with higher levels of executive performance in old age, and underscore the need to consider the heterogeneity of brain aging in relation to cognitive functioning.
  •  
3.
  • Garrett, Douglas D., et al. (författare)
  • Amphetamine modulates brain signal variability and working memory in younger and older adults
  • 2015
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 112:24, s. 7593-7598
  • Tidskriftsartikel (refereegranskat)abstract
    • Better-performing younger adults typically express greater brain signal variability relative to older, poorer performers. Mechanisms for age and performance-graded differences in brain dynamics have, however, not yet been uncovered. Given the age-related decline of the dopamine (DA) system in normal cognitive aging, DA neuromodulation is one plausible mechanism. Hence, agents that boost systemic DA [such as d-amphetamine (AMPH)] may help to restore deficient signal variability levels. Furthermore, despite the standard practice of counterbalancing drug session order (AMPH first vs. placebo first), it remains understudied how AMPH may interact with practice effects, possibly influencing whether DA up-regulation is functional. We examined the effects of AMPH on functional-MRI-based blood oxygen level-dependent (BOLD) signal variability (SDBOLD) in younger and older adults during a working memory task (letter n-back). Older adults expressed lower brain signal variability at placebo, but met or exceeded young adult SDBOLD levels in the presence of AMPH. Drug session order greatly moderated change-change relations between AMPH-driven SDBOLD and reaction time means (RTmean) and SDs (RTSD). Older adults who received AMPH in the first session tended to improve in RTmean and RTSD when SDBOLD was boosted on AMPH, whereas younger and older adults who received AMPH in the second session showed either a performance improvement when SDBOLD decreased (for RTmean) or no effect at all (for RTSD). The present findings support the hypothesis that age differences in brain signal variability reflect aging-induced changes in dopaminergic neuromodulation. The observed interactions among AMPH, age, and session order highlight the state-and practice-dependent neurochemical basis of human brain dynamics.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy