SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Butchart Stuart H. M.) "

Sökning: WFRF:(Butchart Stuart H. M.)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Leclere, David, et al. (författare)
  • Bending the curve of terrestrial biodiversity needs an integrated strategy
  • 2020
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 585:7826, s. 551-556
  • Tidskriftsartikel (refereegranskat)abstract
    • Increased efforts are required to prevent further losses to terrestrial biodiversity and the ecosystem services that it provides(1,2). Ambitious targets have been proposed, such as reversing the declining trends in biodiversity(3); however, just feeding the growing human population will make this a challenge(4). Here we use an ensemble of land-use and biodiversity models to assess whether-and how-humanity can reverse the declines in terrestrial biodiversity caused by habitat conversion, which is a major threat to biodiversity(5). We show that immediate efforts, consistent with the broader sustainability agenda but of unprecedented ambition and coordination, could enable the provision of food for the growing human population while reversing the global terrestrial biodiversity trends caused by habitat conversion. If we decide to increase the extent of land under conservation management, restore degraded land and generalize landscape-level conservation planning, biodiversity trends from habitat conversion could become positive by the mid-twenty-first century on average across models (confidence interval, 2042-2061), but this was not the case for all models. Food prices could increase and, on average across models, almost half (confidence interval, 34-50%) of the future biodiversity losses could not be avoided. However, additionally tackling the drivers of land-use change could avoid conflict with affordable food provision and reduces the environmental effects of the food-provision system. Through further sustainable intensification and trade, reduced food waste and more plant-based human diets, more than two thirds of future biodiversity losses are avoided and the biodiversity trends from habitat conversion are reversed by 2050 for almost all of the models. Although limiting further loss will remain challenging in several biodiversity-rich regions, and other threats-such as climate change-must be addressed to truly reverse the declines in biodiversity, our results show that ambitious conservation efforts and food system transformation are central to an effective post-2020 biodiversity strategy. To promote the recovery of the currently declining global trends in terrestrial biodiversity, increases in both the extent of land under conservation management and the sustainability of the global food system from farm to fork are required.
  •  
2.
  • Diaz, Sandra, et al. (författare)
  • Pervasive human-driven decline of life on Earth points to the need for transformative change
  • 2019
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 366:6471
  • Forskningsöversikt (refereegranskat)abstract
    • The human impact on life on Earth has increased sharply since the 1970s, driven by the demands of a growing population with rising average per capita income. Nature is currently supplying more materials than ever before, but this has come at the high cost of unprecedented global declines in the extent and integrity of ecosystems, distinctness of local ecological communities, abundance and number of wild species, and the number of local domesticated varieties. Such changes reduce vital benefits that people receive from nature and threaten the quality of life of future generations. Both the benefits of an expanding economy and the costs of reducing nature's benefits are unequally distributed. The fabric of life on which we all depend-nature and its contributions to people-is unravelling rapidly. Despite the severity of the threats and lack of enough progress in tackling them to date, opportunities exist to change future trajectories through transformative action. Such action must begin immediately, however, and address the root economic, social, and technological causes of nature's deterioration.
  •  
3.
  • Lehikoinen, Aleksi, et al. (författare)
  • Large-scale climatic drivers of regional winter bird population trends
  • 2016
  • Ingår i: Diversity and Distributions. - : Wiley. - 1366-9516. ; 22:11, s. 1163-1173
  • Tidskriftsartikel (refereegranskat)abstract
    • Aim: Changes in climate and land use practices have been found to affect animal populations in different parts of the world. These studies have typically been conducted during the breeding season, whereas the non-breeding season (hereafter ‘winter’) has received much less attention. Changes in regional winter abundances could be caused by changes in overall population sizes and/or redistribution of populations. We tested these mechanisms for terrestrial winter bird population changes in Northern Europe and explored the role of climate change and species habitat preference. Location: The Netherlands, Denmark, Sweden, Finland. Methods: We used winter bird counts from four countries conducted annually between 15 December and 20 January in 1980/1981–2013/2014. We report national population trends for 50 species for which a trend could be calculated in at least three of the countries. We analysed country-specific population growth rates in relation to species’ climatic summer and winter niches, habitat preference and migratory behaviour. Results: Species breeding in colder (typically northern) areas showed more negative winter population trends than species breeding in warmer areas. Regional winter population trends were negatively correlated with characteristics of their winter climatic niche: populations in the colder part of their winter distribution increased in abundance, whereas populations in the warmer part of their winter distribution decreased. Woodland species tended to do better than farmland species. Migratory behaviour did not explain variation in population trends. Main conclusions: The generally decreasing winter population trends of cold-dwelling breeding species probably reflect the general decline in population sizes of these species. In contrast, increasing winter population trends for populations in the colder parts of the winter distribution indicate a redistribution of wintering individuals towards the north-east. Both these patterns are likely caused by climate change.
  •  
4.
  • Stephens, Philip A., et al. (författare)
  • Consistent response of bird populations to climate change on two continents
  • 2016
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 352:6281, s. 84-87
  • Tidskriftsartikel (refereegranskat)abstract
    • Global climate change is a major threat to biodiversity. Large-scale analyses have generally focused on the impacts of climate change on the geographic ranges of species and on phenology, the timing of ecological phenomena. We used long-term monitoring of the abundance of breeding birds across Europe and the United States to produce, for both regions, composite population indices for two groups of species: those for which climate suitability has been either improving or declining since 1980. The ratio of these composite indices, the climate impact indicator (CII), reflects the divergent fates of species favored or disadvantaged by climate change. The trend in CII is positive and similar in the two regions. On both continents, interspecific and spatial variation in population abundance trends are well predicted by climate suitability trends.
  •  
5.
  • Monroe, Melanie J., 1982-, et al. (författare)
  • The dynamics underlying avian extinction trajectories forecast a wave of extinctions
  • 2019
  • Ingår i: Biology Letters. - : Royal Society Publishing. - 1744-9561 .- 1744-957X. ; 15:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Population decline is a process, yet estimates of current extinction rates often consider just the final step of that process by counting numbers of species lost in historical times. This neglects the increased extinction risk that affects a large proportion of species, and consequently underestimates the effective extinction rate. Here, we model observed trajectories through IUCN Red List extinction risk categories for all bird species globally over 28 years, and estimate an overall effective extinction rate of 2.17 x 10(-4)/species/year. This is six times higher than the rate of outright extinction since 1500, as a consequence of the large number of species whose status is deteriorating. We very conservatively estimate that global conservation efforts have reduced the effective extinction rate by 40%, but mostly through preventing critically endangered species from going extinct rather than by preventing species at low risk from moving into higher-risk categories. Our findings suggest that extinction risk in birds is accumulating much more than previously appreciated, but would be even greater without conservation efforts.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy