SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Butina Karen) "

Sökning: WFRF:(Butina Karen)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Butina, Karen, et al. (författare)
  • An Organic Electrochemical Transistor to Monitor Salmonella Growth in Real-Time
  • 2021
  • Ingår i: Advanced Materials Interfaces. - : Wiley. - 2196-7350. ; 8:18, s. 2100961-
  • Tidskriftsartikel (refereegranskat)abstract
    • Organic electrochemical transistors (OECTs) are used in research and diagnostic applications due to their facile manufacture, scalability, and biocompatibility. In these devices, the source–drain current upon gate voltage application depends on ion concentration in the electrolyte. This study investigates whether an OECT can be employed to monitor bacterial growth since it is known that the concentration of charged species increases in bacterial cultures during growth. A poly(3,4-ethylenedioxythiophene):polystyrene sulfonate-based single-well OECT, compatible with long-term incubation of bacterial cultures, is fabricated. It is shown that the growth of Salmonella alters the transfer characteristics of the device and demonstrates how it can be applied to monitor growth in real-time by recording the source–drain current at gate voltage +0.5 V. The signal can also be measured in filtrates of bacterial cultures, devoid of bacterial cells. This suggests that the signal originates from charged metabolic products. Bacterial biofilm formation does not alter the device response. This proof-of-principle study presents OECT recordings as an alternative to optical methods, allowing bacterial growth to be monitored in transparent and opaque media alike. By measuring metabolic products rather than bacterial cell multiplication, insight into the stationary phase and other nondividing states may be obtained in the future.
  •  
2.
  • Butina, Karen (författare)
  • Bacterial sensors and controllers based on organic bioelectronics
  • 2021
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Bacterial infections and contaminations are worldwide problems, leading to morbidity and mortality, food waste and economic losses in a variety of industries. The situation is aggravated by the increased occurrence of antibiotic-resistant strains, identified by the WHO as one of the biggest threats to development, food security and public health today. The solution to this problem is complex and requires efforts from several different layers of the society, and different disciplines. The knowledge about microbiology has greatly advanced in the last decades and several powerful methods were introduced. However, in most clinical microbiology laboratories, culture-based techniques are still standard practice, representing a bottleneck in the diagnostic workflow. In this thesis, we prototype novel methods to detect and identify bacteria, aiming to reduce the time and workload for future microbiology research and diagnostics. Furthermore, a new methodology is devised to evaluate antimicrobial surface properties for relevant high-touch surfaces. In Paper I, we investigated whether conducting polymers can be applied for label-free electrochemical detection of bacteria. Employing a poly(3,4-ethylenedioxythiophene): polystyrenesulfonate (PEDOT:PSS)-based two-electrode sensor we demonstrated that potentiometric detection and quantification of Salmonella Enteritidis is possible within 15 min, without any sample pre-treatment. We show that the reduction of PEDOT:PSS electrode occurs by low molecular weight species secreted by Salmonella Enteritidis. To evaluate the genericity of the sensor, several uropathogenic strains were tested and we found that they could all be detected using the sensor. In its current form, the sensor is a prototype, and we aim to improve its sensitivity and introduce specificity. Electroactivity was shown to be a rather common characteristic of bacteria and consequentially, electrochemical methods for detection and characterization of microbes are gaining momentum. We envision that this field will provide novel diagnostic devices but also contribute to discoveries in basic science. Luminescent conjugated oligothiophenes, called optotracers, have previously been applied in microbiology to visualize extracellular matrix components in biofilms of Salmonella and Escherichia coli. In Paper II, we investigated the use of optotracers for detection and visualization of Staphylococcus aureus (S. aureus). We show that the optotracer HS-167 selectively binds to Staphylococci and can be used for fluorometric detection and quantification of S. aureus, as well as for staining and visualization using confocal microscopy. HS-167 displays an on-switch of fluorescence upon binding and it does not affect bacterial growth, which enabled us to develop a high-throughput assay where the fluorescence was plotted against bacterial density, measured as an increase in turbidity. The resulting slope was a quantifiable variable that we employed to compare binding of HS-167 to different species and strains. Diverse approaches collectively pointed to the cell envelope as the target for HS-167 binding. Finally, we showed that binding is highly dependent on the environmental conditions and those can be adjusted to tune the selectivity of HS-167. To improve optotracer design for detection of S. aureus, a better insight into the structure- function relationship is needed. In Paper III, we set out to establish a structured approach to optotracer screening that would enable us to compare optotracer performance. As we compared a library of ten different optotracers, we identified the length to be positively correlated and the total negative charge to be negatively correlated with the ability to detect S. aureus. A balance between the two was necessary to achieve the highest signal while maintaining selectivity. Selected optotracers were added to S. aureus and visualized under the confocal microscope. All localized in the cell envelope of the bacterium, as was previously observed for HS-167 (Paper II). We foresee that further insight into the binding mechanism will enable targeted optotracer design, and together with optimized assay conditions, specific detection of different bacterial species. Copper is known to possess antimicrobial properties, yet studies have reported discrepant results on its efficacy, especially in the clinical settings. Disagreeing results were ascribed to the lack of a standardized approach to evaluate the antimicrobial properties of copper surfaces. In Paper IV, we establish a multifaceted approach to address the effect of human touch, which we simulate by applying artificial sweat, on surface corrosion and antimicrobial properties of copper. We found that artificial sweat accelerates corrosion, leading to changes in surface appearance and wettability. Corrosion did not negatively affect the antimicrobial properties of copper as these surfaces killed bacteria within minutes, regardless of ageing or corrosion product formation. The antimicrobial effect is ascribed in part to copper ions released from the surface and in part to direct surface contact. To further validate the results of this study, other bacterial species need to be tested. Since high touch surfaces are likely to collect a lot of microbes over time, it would be of interest to determine how the bacterial load affects the antimicrobial properties.
  •  
3.
  • Butina, Karen, et al. (författare)
  • Electrochemical sensing of bacteria via secreted redox active compounds using conducting polymers
  • 2019
  • Ingår i: Sensors and actuators. B, Chemical. - : Elsevier. - 0925-4005 .- 1873-3077. ; 297
  • Tidskriftsartikel (refereegranskat)abstract
    • Bacterial infections and antibiotic resistance represent major global threats to public health. Current diagnostics use culture based assays that are reliable but slow, hence appealing for new rapid methods. Here we describe redox sensing as a novel concept for rapid, label-free detection of bacteria. We utilize a two-electrode poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS) based sensor for detection of bacterially secreted redox-active compounds. Using purified redox-active compounds, we show the ability of the sensor to detect and quantify compounds in micromolar concentrations within minutes. When applied for detection and quantification of Salmonella, we show that secreted, low molecular weight redox compounds cause reduction of the PEDOT:PSS electrode. A potential role of redox sensing in infection diagnostics was demonstrated as uropathogenic strains of E. coli., Staphylococcus, Enterococcus, Pseudomonas, Proteus, and Klebsiella spp., major causes of complicated urinary tract infections, were successfully detected in complex media or processed urine. Since numerous bacterial species are capable of extracellular electron transfer, redox sensing may find use as a generic method for bacterial detection with applications in research laboatories, the clinic and industry alike.
  •  
4.
  • Butina, Karen, et al. (författare)
  • Optotracing for selective fluorescence-based detection, visualization and quantification of live S. aureus in real-time
  • 2020
  • Ingår i: npj Biofilms and Microbiomes. - : Nature Research. - 2055-5008. ; 6:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Methods for bacterial detection are needed to advance the infection research and diagnostics. Based on conformation-sensitive fluorescent tracer molecules, optotracing was recently established for dynamic detection and visualization of structural amyloids and polysaccharides in the biofilm matrix of gram-negative bacteria. Here, we extend the use of optotracing for detection of gram-positive bacteria, focussing on the clinically relevant opportunistic human pathogen Staphylococcus aureus. We identify a donor-acceptor-donor-type optotracer, whose binding-induced fluorescence enables real-time detection, quantification, and visualization of S. aureus in monoculture and when mixed with gram-negative Salmonella Enteritidis. An algorithm-based automated high-throughput screen of 1920 S. aureus transposon mutants recognized the cell envelope as the binding target, which was corroborated by super-resolution microscopy of bacterial cells and spectroscopic analysis of purified cell wall components. The binding event was essentially governed by hydrophobic interactions, which permitted custom-designed tuning of the binding selectivity towards S. aureus versus Enterococcus faecalis by appropriate selection of buffer conditions. Collectively this work demonstrates optotracing as an enabling technology relevant for any field of basic and applied research, where visualization and detection of S. aureus is needed.
  •  
5.
  • Butina, Karen, et al. (författare)
  • Structural Properties Dictating Selective Optotracer Detection of Staphylococcus aureus
  • 2022
  • Ingår i: ChemBioChem. - : Wiley. - 1439-4227 .- 1439-7633. ; 23:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Optotracers are conformation-sensitive fluorescent tracer molecules that detect peptide- and carbohydrate-based biopolymers. Their binding to bacterial cell walls allows selective detection and visualisation of Staphylococcus aureus (S. aureus). Here, we investigated the structural properties providing optimal detection of S. aureus. We quantified spectral shifts and fluorescence intensity in mixes of bacteria and optotracers, using automatic peak analysis, cross-correlation, and area-under-curve analysis. We found that the length of the conjugated backbone and the number of charged groups, but not their distribution, are important factors for selective detection of S. aureus. The photophysical properties of optotracers were greatly improved by incorporating a donor-acceptor-donor (D-A-D)-type motif in the conjugated backbone. With significantly reduced background and binding-induced on-switch of fluorescence, these optotracers enabled real-time recordings of S. aureus growth. Collectively, this demonstrates that chemical structure and photophysics are key tunable characteristics in the development of optotracers for selective detection of bacterial species. 
  •  
6.
  • Chang, Tingru, et al. (författare)
  • The interplay between atmospheric corrosion and antimicrobial efficiency of Cu and Cu5Zn5Al1Sn during simulated high-touch conditions
  • 2021
  • Ingår i: Corrosion Science. - : Elsevier BV. - 0010-938X .- 1879-0496. ; 185
  • Tidskriftsartikel (refereegranskat)abstract
    • The interplay between atmospheric corrosion and antimicrobial efficiency of bare Cu and Cu5Zn5Al1Sn was studied upon exposures simulating high-touch surface conditions. The survival of the bacteria Bacillus subtilis during surface contact with Cu and Cu5Zn5Al1Sn was examined under different degrees of surface oxidation, tarnishing, wettability and copper ion release. Depending on surface conditions complete bacteria inhibition was obtained within 4 min on Cu and within 6-10 min on Cu5Zn5Al1Sn. The antibacterial efficiency increases slightly with copper release rate and is governed by complex interactions between the corroded metal surface, bacteria and extracellular polymeric substances produced by the bacteria.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy