SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Buzna L.) "

Sökning: WFRF:(Buzna L.)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Cebecauer, Matej, et al. (författare)
  • A versatile adaptive aggregation framework for spatially large discrete location-allocation problems
  • 2017
  • Ingår i: Computers & industrial engineering. - : Elsevier. - 0360-8352 .- 1879-0550. ; 111, s. 364-380
  • Tidskriftsartikel (refereegranskat)abstract
    • We propose a versatile concept of the adaptive aggregation framework for the facility location problems that keeps the problem size in reasonable limits. Most location-allocation problems are known to be NP-hard. Thus, if a problem reaches the critical size, the computation exceeds reasonable time limits, or all computer memory is consumed. Aggregation is a tool that allows for transforming problems into smaller sizes. Usually, it is used only in the data preparation phase, and it leads to the loss of optimality due to aggregation errors. This is particularly remarkable when solving problems with a large number of demand points. The proposed framework embeds the aggregation into the solving process and it iteratively adjusts the aggregation level to the high quality solutions. To explore its versatility, we apply it to the p-median and to the lexicographic minimax problems that lead to structurally different patterns of located facilities. To evaluate the optimality errors, we use benchmarks which can be computed exactly, and to explore the limits of our approach, we study benchmarks reaching 670,000 demand points. Numerical experiments reveal that the adaptive aggregation framework performs well across a large range of problem sizes and is able to provide solutions of higher quality than the state-of-the-art exact methods when applied to the aggregated problem.
  •  
2.
  • Cebecauer, Matej, et al. (författare)
  • Large-scale test data set for location problems
  • 2018
  • Ingår i: Data in Brief. - : Elsevier Inc.. - 2352-3409. ; 17, s. 267-274
  • Tidskriftsartikel (refereegranskat)abstract
    • Designers of location algorithms share test data sets (benchmarks) to be able to compare performance of newly developed algorithms. In previous decades, the availability of locational data was limited. Big data has revolutionised the amount and detail of information available about human activities and the environment. It is expected that integration of big data into location analysis will increase the resolution and precision of input data. Consequently, the size of solved problems will significantly increase the demand on the development of algorithms that will be able to solve such problems. Accessibility of realistic large scale test data sets, with the number of demands points above 100,000, is very limited. The presented data set covers entire area of Slovakia and consists of the graph of the road network and almost 700,000 connected demand points. The population of 5.5 million inhabitants is allocated to the locations of demand points considering the residential population grid to estimate the size of the demand. The resolution of demand point locations is 100 m. With this article the test data is made publicly available to enable other researches to investigate their algorithms. The second area of its utilisation is the design of methods to eliminate aggregation errors that are usually present when considering location problems of such size. The data set is related to two research articles: “A Versatile Adaptive Aggregation Framework for Spatially Large Discrete Location-Allocation Problem” (Cebecauer and Buzna, 2017) [1] and “Effects of demand estimates on the evaluation and optimality of service centre locations” (Cebecauer et al., 2016) [2]. 
  •  
3.
  • Koháni, M., et al. (författare)
  • Designing charging infrastructure for a fleet of electric vehicles operating in large urban areas
  • 2017
  • Ingår i: ICORES 2017 - Proceedings of the 6th International Conference on Operations Research and Enterprise Systems. - : SciTePress. - 9789897582189 ; , s. 360-368
  • Konferensbidrag (refereegranskat)abstract
    • Here, we propose a method to design a charging infrastructure for a fleet of electric vehicles such as a fleet of taxicabs, fleet of vans used in the city logistics or a fleet of shared vehicles, operating in large urban areas. Design of a charging infrastructure includes decisions about charging stations location and number of charging points at each station. It is assumed that the fleet is originally composed of vehicles equipped with an internal combustion engine, however, the operator is wishing to replace them with fully electric vehicles. To avoid an interaction with other electric vehicles it is required to design a private network of charging stations that will be specifically adapted to the operation of a fleet. It is often possible to use GPS traces of vehicles characterizing actual travel patterns of individual vehicles. First, to derive a suitable set of candidate locations from GPS data, we propose a practical procedure where the outcomes can be simply controlled by setting few parameter values. Second, we formulate a mathematical model that combines location and scheduling decisions to ensure that requirements of vehicles can be satisfied. We validate the applicability of our approach by applying it to the data characterizing a large taxicab fleet operating in the city of Stockholm. Our results indicate that this approach can be used to estimate the minimal requirements to set up the charging infrastructure. 
  •  
4.
  • Koháni, M., et al. (författare)
  • Location-scheduling optimization problem to design private charging infrastructure for electric vehicles
  • 2018
  • Ingår i: 6th International Conference on Operations Research and Enterprise Systems, ICORES 2017. - Cham : Springer. - 9783319947662 ; , s. 151-169
  • Konferensbidrag (refereegranskat)abstract
    • We propose optimization model to design a charging infrastructure for a fleet of electric vehicles. Applicable examples include a fleet of vans used in the city logistics, a fleet of taxicabs or a fleet of shared vehicles operating in urban areas. Fleet operator is wishing to replace vehicles equipped with an internal combustion engine with fully electric vehicles. To eliminate interaction with other electric vehicles it is required to design a private network of charging stations that is specifically adjusted to the fleet operation. First, to derive a suitable set of candidate locations from GPS data, we propose a practical procedure where the outcomes can be simply controlled by setting few parameter values. Second, we formulate a mathematical model that combines location and scheduling decisions to ensure that requirements of vehicles can be satisfied. We validate the applicability of our approach by applying it to data characterizing a large taxicab fleet operating in the city of Stockholm. The model assumes that all vehicles posses complete information about all other vehicles. To study the role of available information, we evaluate the resulting designs considering the coordinated charging when vehicle drivers, for example, reveal to each other departure times, and the uncoordinated charging when vehicle drivers know only actual occupation of charging points. Our results indicate that this approach can be used to estimate the minimal requirements to set up the charging infrastructure.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4
Typ av publikation
konferensbidrag (2)
tidskriftsartikel (2)
Typ av innehåll
refereegranskat (4)
Författare/redaktör
Cebecauer, Matej (4)
Buzna, Ľ. (4)
Vana, M. (2)
Koháni, M. (2)
Czimmermann, P. (2)
Lärosäte
Kungliga Tekniska Högskolan (4)
Språk
Engelska (4)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (2)
Teknik (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy