SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bykova I.) "

Sökning: WFRF:(Bykova I.)

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bykov, M., et al. (författare)
  • Fe-N system at high pressure reveals a compound featuring polymeric nitrogen chains
  • 2018
  • Ingår i: Nature Communications. - : NATURE PUBLISHING GROUP. - 2041-1723. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Poly-nitrogen compounds have been considered as potential high energy density materials for a long time due to the large number of energetic N-N or N=N bonds. In most cases high nitrogen content and stability at ambient conditions are mutually exclusive, thereby making the synthesis of such materials challenging. One way to stabilize such compounds is the application of high pressure. Here, through a direct reaction between Fe and N-2 in a laser-heated diamond anvil cell, we synthesize three ironnitrogen compounds Fe3N2, FeN2 and FeN4. Their crystal structures are revealed by single-crystal synchrotron X-ray diffraction. Fe3N2, synthesized at 50 GPa, is isostructural to chromium carbide Cr3C2. FeN2 has a marcasite structure type and features covalently bonded dinitrogen units in its crystal structure. FeN4, synthesized at 106 GPa, features polymeric nitrogen chains of [N-4(2-)](n) units. Based on results of structural studies and theoretical analysis, [N-4(2-)](n) units in this compound reveal catena-poly[tetraz-1-ene-1,4-diyl] anions.
  •  
2.
  • Potapkin, V., et al. (författare)
  • Magnetic interactions in NiO at ultrahigh pressure
  • 2016
  • Ingår i: PHYSICAL REVIEW B. - : AMER PHYSICAL SOC. - 2469-9950. ; 93:20, s. 201110-
  • Tidskriftsartikel (refereegranskat)abstract
    • Magnetic properties of NiO have been studied in the multimegabar pressure range by nuclear forward scattering of synchrotron radiation using the 67.4 keV Mossbauer transition of Ni-61. The observed magnetic hyperfine splitting confirms the antiferromagnetic state of NiO up to 280 GPa, the highest pressure where magnetism has been observed so far, in any material. Remarkably, the hyperfine field increases from 8.47 T at ambient pressure to similar to 24 T at the highest pressure, ruling out the possibility of a magnetic collapse. A joint x-ray diffraction and extended x-ray-absorption fine structure investigation reveals that NiO remains in a distorted sodium chloride structure in the entire studied pressure range. Ab initio calculations support the experimental observations, and further indicate a complete absence of Mott transition in NiO up to at least 280 GPa.
  •  
3.
  • Agius, Stephanie C, et al. (författare)
  • The internal rotenone-insensitive NADPH dehydrogenase contributes to malate oxidation by potato tuber and pea leaf mitochondria
  • 1998
  • Ingår i: Physiologia Plantarum. - : Wiley. - 0031-9317. ; 104:3, s. 329-336
  • Tidskriftsartikel (refereegranskat)abstract
    • Inside-out submitochondrial particles from both potato (Solanum tuberosum L. cv. Bintje) tubers and pea (Pisum sativum L. cv. Oregon) leaves possess three distinct dehydrogenase activities: Complex I catalyzes the rotenone-sensitive oxidation of deamino-NADH, NDin(NADPH) catalyzes the rotenone-insensitive and Ca2+-dependent oxidation of NADPH and NDin(NADH) catalyzes the rotenone-insensitive and Ca2+-independent oxidation of NADH. Diphenylene iodonium (DPI) inhibits complex I, NDin(NADPH) and NDin (NADH) activity with a Ki of 3.7, 0.17 and 63 µM, respectively, and the 400-fold difference in Ki between the two NDin made possible the use of DPI inhibition to estimate NDin (NADPH) contribution to malate oxidation by intact mitochondria. The oxidation of malate in the presence of rotenone by intact mitochondria from both species was inhibited by 5 µM DPI. The maximum decrease in rate was 10–20 nmol O2 mg-1 min-1. The reduction level of NAD(P) was manipulated by measuring malate oxidation in state 3 at pH 7.2 and 6.8 and in the presence and absence of an oxaloacetate-removing system. The inhibition by DPI was largest under conditions of high NAD(P) reduction. Control experiments showed that 125 µM DPI had no effect on the activities of malate dehydrogenase (with NADH or NADPH) or malic enzyme (with NAD+ or NADP+) in a matrix extract from either species. Malate dehydrogenase was unable to use NADP+ in the forward reaction. DPI at 125 µM did not have any effect on succinate oxidation by intact mitochondria of either species. We conclude that the inhibition caused by DPI in the presence of rotenone in plant mitochondria oxidizing malate is due to inhibition of NDin(NADPH) oxidizing NADPH. Thus, NADP turnover contributes to malate oxidation by plant mitochondria.
  •  
4.
  • Ahlberg, Martina, et al. (författare)
  • Freezing and thawing magnetic droplet solitons
  • 2022
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Magnetic droplets are a type of non-topological magnetic soliton, which are stabilised and sustained by spin-transfer torques for instance. Without this, they would collapse. Here Ahlberg et al show that by decreasing the applied magnetic field, droplets can be frozen, forming a static nanobubble Magnetic droplets are non-topological magnetodynamical solitons displaying a wide range of complex dynamic phenomena with potential for microwave signal generation. Bubbles, on the other hand, are internally static cylindrical magnetic domains, stabilized by external fields and magnetostatic interactions. In its original theory, the droplet was described as an imminently collapsing bubble stabilized by spin transfer torque and, in its zero-frequency limit, as equivalent to a bubble. Without nanoscale lateral confinement, pinning, or an external applied field, such a nanobubble is unstable, and should collapse. Here, we show that we can freeze dynamic droplets into static nanobubbles by decreasing the magnetic field. While the bubble has virtually the same resistance as the droplet, all signs of low-frequency microwave noise disappear. The transition is fully reversible and the bubble can be thawed back into a droplet if the magnetic field is increased under current. Whereas the droplet collapses without a sustaining current, the bubble is highly stable and remains intact for days without external drive. Electrical measurements are complemented by direct observation using scanning transmission x-ray microscopy, which corroborates the analysis and confirms that the bubble is stabilized by pinning.
  •  
5.
  •  
6.
  • Aprilis, Georgios, et al. (författare)
  • The Effect of Pulsed Laser Heating on the Stability of Ferropericlase at High Pressures
  • 2020
  • Ingår i: Minerals. - : MDPI. - 2075-163X. ; 10:6
  • Tidskriftsartikel (refereegranskat)abstract
    • It is widely accepted that the lower mantle consists of mainly three major minerals-ferropericlase, bridgmanite and calcium silicate perovskite. Ferropericlase ((Mg,Fe)O) is the second most abundant of the three, comprising approximately 16-20 wt% of the lower mantle. The stability of ferropericlase at conditions of the lowermost mantle has been highly investigated, with controversial results. Amongst other reasons, the experimental conditions during laser heating (such as duration and achieved temperature) have been suggested as a possible explanation for the discrepancy. In this study, we investigate the effect of pulsed laser heating on the stability of ferropericlase, with a geochemically relevant composition of Mg0.76Fe0.24O (Fp24) at pressure conditions corresponding to the upper part of the lower mantle and at a wide temperature range. We report on the decomposition of Fp24 with the formation of a high-pressure (Mg,Fe)(3)O(4)phase with CaTi2O4-type structure, as well as the dissociation of Fp24 into Fe-rich and Mg-rich phases induced by pulsed laser heating. Our results provide further arguments that the chemical composition of the lower mantle is more complex than initially thought, and that the compositional inhomogeneity is not only a characteristic of the lowermost part, but includes depths as shallow as below the transition zone.
  •  
7.
  •  
8.
  • Dubrovinsky, L., et al. (författare)
  • The most incompressible metal osmium at static pressures above 750 gigapascals
  • 2015
  • Ingår i: Nature. - : NATURE PUBLISHING GROUP. - 0028-0836 .- 1476-4687. ; 525:7568, s. 226-
  • Tidskriftsartikel (refereegranskat)abstract
    • Metallic osmium (Os) is one of the most exceptional elemental materials, having, at ambient pressure, the highest known density and one of the highest cohesive energies and melting temperatures(1). It is also very incompressible(2-4), but its high-pressure behaviour is not well understood because it has been studied(2-6) so far only at pressures below 75 gigapascals. Here we report powder X-ray diffraction measurements on Os at multi-megabar pressures using both conventional and double-stage diamond anvil cells(7), with accurate pressure determination ensured by first obtaining self-consistent equations of state of gold, platinum, and tungsten in static experiments up to 500 gigapascals. These measurements allow us to show that Os retains its hexagonal close-packed structure upon compression to over 770 gigapascals. But although its molar volume monotonically decreases with pressure, the unit cell parameter ratio of Os exhibits anomalies at approximately 150 gigapascals and 440 gigapascals. Dynamical mean-field theory calculations suggest that the former anomaly is a signature of the topological change of the Fermi surface for valence electrons. However, the anomaly at 440 gigapascals might be related to an electronic transition associated with pressure-induced interactions between core electrons. The ability to affect the core electrons under static high-pressure experimental conditions, even for incompressible metals such as Os, opens up opportunities to search for new states of matter under extreme compression.
  •  
9.
  • Koemets, E., et al. (författare)
  • Revealing the Complex Nature of Bonding in the Binary High-Pressure Compound FeO2
  • 2021
  • Ingår i: Physical Review Letters. - : AMER PHYSICAL SOC. - 0031-9007 .- 1079-7114. ; 126:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Extreme pressures and temperatures are known to drastically affect the chemistry of iron oxides, resulting in numerous compounds forming homologous series nFeOmFe(2)O(3) and the appearance of FeO2. Here, based on the results of in situ single-crystal x-ray diffraction, Mossbauer spectroscopy, x-ray absorption spectroscopy, and density-functional theory + dynamical mean-field theory calculations, we demonstrate that iron in high-pressure cubic FeO2 and isostructural FeO2H0.5 is ferric (Fe3+), and oxygen has a formal valence less than 2. Reduction of oxygen valence from 2, common for oxides, down to 1.5 can be explained by a formation of a localized hole at oxygen sites.
  •  
10.
  • Yin, Yuqing, et al. (författare)
  • Synthesis of rare-earth metal compounds through enhanced reactivity of alkali halides at high pressures
  • 2022
  • Ingår i: Communications Chemistry. - : Nature Portfolio. - 2399-3669. ; 5:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Chemical stability of the alkali halides NaCI and KCI has allowed for their use as inert media in high-pressure high-temperature experiments. Here we demonstrate the unexpected reactivity of the halides with metals (Y, Dy, and Re) and iron oxide (FeO) in a laser-heated diamond anvil cell, thus providing a synthetic route for halogen-containing binary and ternary compounds. So far unknown chlorides, Y2Cl and DyCl, and chloride carbides, Y2ClC and Dy2ClC, were synthesized at -40 GPa and 2000 K and their structures were solved and refined using in situ single-crystal synchrotron X-ray diffraction. Also, FeCl2 with the HP-PdF2-type structure, previously reported at 108 GPa, was synthesized at similar to 160 GPa and 2100 K. The results of our ab initio calculations fully support experimental findings and reveal the electronic structure and chemical bonding in these compounds.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy