SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Bykova T) "

Search: WFRF:(Bykova T)

  • Result 1-5 of 5
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  •  
3.
  • Koemets, E., et al. (author)
  • Revealing the Complex Nature of Bonding in the Binary High-Pressure Compound FeO2
  • 2021
  • In: Physical Review Letters. - : AMER PHYSICAL SOC. - 0031-9007 .- 1079-7114. ; 126:10
  • Journal article (peer-reviewed)abstract
    • Extreme pressures and temperatures are known to drastically affect the chemistry of iron oxides, resulting in numerous compounds forming homologous series nFeOmFe(2)O(3) and the appearance of FeO2. Here, based on the results of in situ single-crystal x-ray diffraction, Mossbauer spectroscopy, x-ray absorption spectroscopy, and density-functional theory + dynamical mean-field theory calculations, we demonstrate that iron in high-pressure cubic FeO2 and isostructural FeO2H0.5 is ferric (Fe3+), and oxygen has a formal valence less than 2. Reduction of oxygen valence from 2, common for oxides, down to 1.5 can be explained by a formation of a localized hole at oxygen sites.
  •  
4.
  • Bruening, Lukas, et al. (author)
  • Stabilization of Guanidinate Anions [CN3]5− in Calcite-Type SbCN3
  • 2023
  • In: Angewandte Chemie International Edition. - : WILEY-V C H VERLAG GMBH. - 1433-7851 .- 1521-3773. ; 62:47
  • Journal article (peer-reviewed)abstract
    • The stabilization of nitrogen-rich phases presents a significant chemical challenge due to the inherent stability of the dinitrogen molecule. This stabilization can be achieved by utilizing strong covalent bonds in complex anions with carbon, such as cyanide CN- and NCN(2- )carbodiimide, while more nitrogen-rich carbonitrides are hitherto unknown. Following a rational chemical design approach, we synthesized antimony guanidinate SbCN3 at pressures of 32-38 GPa using various synthetic routes in laser-heated diamond anvil cells. SbCN3, which is isostructural to calcite CaCO3, can be recovered under ambient conditions. Its structure contains the previously elusive guanidinate anion [CN3](5-), marking a fundamental milestone in carbonitride chemistry. The crystal structure of SbCN3 was solved and refined from synchrotron single-crystal X-ray diffraction data and was fully corroborated by theoretical calculations, which also predict that SbCN3 has a direct band gap with the value of 2.20 eV. This study opens a straightforward route to the entire new family of inorganic nitridocarbonates.
  •  
5.
  • Chung, Sunjae, et al. (author)
  • Direct Observation of Zhang-Li Torque Expansion of Magnetic Droplet Solitons
  • 2018
  • In: Physical Review Letters. - : AMER PHYSICAL SOC. - 0031-9007 .- 1079-7114. ; 120:21
  • Journal article (peer-reviewed)abstract
    • Magnetic droplets are nontopological dynamical soli tons that can be nucleated in nanocontact based spin torque nano-oscillators (STNOs) with perpendicular magnetic anisotropy free layers. While theory predicts that the droplet should be of the same size as the nanocontact, its inherent drift instability has thwarted attempts at observing it directly using microscopy techniques. Here, we demonstrate highly stable magnetic droplets in all-perpendicular STNOs and present the first detailed droplet images using scanning transmission X-ray microscopy. In contrast to theoretical predictions, we find that the droplet diameter is about twice as large as the nanocontact. By extending the original droplet theory to properly account for the lateral current spread underneath the nanocontact, we show that the large discrepancy primarily arises from current-in-plane Zhang-Li torque adding an outward pressure on the droplet perimeter. Electrical measurements on droplets nucleated using a reversed current in the antiparallel state corroborate this picture.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-5 of 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view