SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Byström Anders S) "

Sökning: WFRF:(Byström Anders S)

  • Resultat 1-10 av 40
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Macari, F., et al. (författare)
  • TRM6/61 connects PKCα with translational control through tRNAiMet stabilization : impact on tumorigenesis
  • 2016
  • Ingår i: Oncogene. - : Springer Science and Business Media LLC. - 0950-9232 .- 1476-5594. ; 35:14, s. 1785-1796
  • Tidskriftsartikel (refereegranskat)abstract
    • Accumulating evidence suggests that changes of the protein synthesis machinery alter translation of specific mRNAs and participate in malignant transformation. Here we show that protein kinase C [alpha] (PKC[alpha]) interacts with TRM61, the catalytic subunit of the TRM6/61 tRNA methyltransferase. The TRM6/61 complex is known to methylate the adenosine 58 of the initiator methionine tRNA (tRNAiMet), a nuclear post-transcriptional modification associated with the stabilization of this crucial component of the translation-initiation process. Depletion of TRM6/61 reduced proliferation and increased death of C6 glioma cells, effects that can be partially rescued by overexpression of tRNAiMet. In contrast, elevated TRM6/61 expression regulated the translation of a subset of mRNAs encoding proteins involved in the tumorigenic process and increased the ability of C6 cells to form colonies in soft agar or spheres when grown in suspension. In TRM6/61/tRNAiMet-overexpressing cells, PKC[alpha] overexpression decreased tRNAiMet expression and both colony- and sphere-forming potentials. A concomitant increase in TRM6/TRM61 mRNA and tRNAiMet expression with decreased expression of PKC[alpha] mRNA was detected in highly aggressive glioblastoma multiforme as compared with Grade II/III glioblastomas, highlighting the clinical relevance of our findings. Altogether, we suggest that PKC[alpha] tightly controls TRM6/61 activity to prevent translation deregulation that would favor neoplastic development.
  •  
2.
  • Friant, S, et al. (författare)
  • Interactions between Ty1 retrotransposon RNA and the T and D regions of the tRNA(iMet) primer are required for initiation of reverse transcription in vivo
  • 1998
  • Ingår i: Molecular and Cellular Biology. - 0270-7306 .- 1098-5549. ; 18:2, s. 799-806
  • Tidskriftsartikel (refereegranskat)abstract
    • Reverse transcription of the Saccharomyces cerevisiae Ty1 retrotransposon is primed by tRNA(iMet) base paired to the primer binding site (PBS) near the 5' end of Ty1 genomic RNA. The 10-nucleotide PBS is complementary to the last 10 nucleotides of the acceptor stem of tRNA(iMet). A structural probing study of the interactions between the Ty1 RNA template and the tRNA(iMet) primer showed that besides interactions between the PBS and the 3' end of tRNA(iMet), three short regions of Ty1 RNA, named boxes 0, 1, and 2.1, interact with the T and D stems and loops of tRNA(iMet). To determine if these sequences are important for the reverse transcription pathway of the Ty1 retrotransposon, mutant Ty1 elements and tRNA(iMet) were tested for the ability to support transposition. We show that the Ty1 boxes and the complementary sequences in the T and D stems and loops of tRNA(iMet) contain bases that are critical for Ty1 retrotransposition. Disruption of 1 or 2 bp between tRNA(iMet) and box 0, 1, or 2.1 dramatically decreases the level of transposition. Compensatory mutations which restore base pairing between the primer and the template restore transposition. Analysis of the reverse transcription intermediates generated inside Ty1 virus-like particles indicates that initiation of minus-strand strong-stop DNA synthesis is affected by mutations disrupting complementarity between Ty1 RNA and primer tRNA(iMet).
  •  
3.
  • Johansson, Marcus J O, et al. (författare)
  • Eukaryotic wobble uridine modifications promote a functionally redundant decoding system.
  • 2008
  • Ingår i: Molecular and Cellular Biology. - 0270-7306 .- 1098-5549. ; 28:10, s. 3301-3312
  • Tidskriftsartikel (refereegranskat)abstract
    • The translational decoding properties of tRNAs are modulated by naturally occurring modifications of their nucleosides. Uridines located at the wobble position (nucleoside 34 [U34]) in eukaryotic cytoplasmic tRNAs often harbor a 5-methoxycarbonylmethyl (mcm(5)) or a 5-carbamoylmethyl (ncm(5)) side chain and sometimes an additional 2-thio (s2) or 2'-O-methyl group. Although a variety of models explaining the role of these modifications have been put forth, their in vivo functions have not been defined. In this study, we utilized recently characterized modification-deficient Saccharomyces cerevisiae cells to test the wobble rules in vivo. We show that mcm5 and ncm5 side chains promote decoding of G-ending codons and that concurrent mcm5 and s2 groups improve reading of both A- and G-ending codons. Moreover, the observation that the mcm5U34- and some ncm5U34-containing tRNAs efficiently read G-ending codons challenges the notion that eukaryotes do not use U-G wobbling.
  •  
4.
  • Lu, Jian, et al. (författare)
  • Kluyveromyces lactis γ-toxin, a ribonuclease that recognizes the anticodon stem loop of tRNA
  • 2008
  • Ingår i: Nucleic Acids Research. - : Oxford University Press (OUP). - 0305-1048 .- 1362-4962. ; 36:4, s. 1072-1080
  • Tidskriftsartikel (refereegranskat)abstract
    • Kluyveromyces lactis gamma-toxin is a tRNA endonuclease that cleaves Saccharomyces cerevisiae [see text] between position 34 and position 35. All three substrate tRNAs carry a 5-methoxycarbonylmethyl-2-thiouridine (mcm(5)s(2)U) residue at position 34 (wobble position) of which the mcm(5) group is required for efficient cleavage. However, the different cleavage efficiencies of mcm(5)s(2)U(34)-containing tRNAs suggest that additional features of these tRNAs affect cleavage. In the present study, we show that a stable anticodon stem and the anticodon loop are the minimal requirements for cleavage by gamma-toxin. A synthetic minihelix RNA corresponding to the anticodon stem loop (ASL) of the natural substrate [see text] is cleaved at the same position as the natural substrate. In [see text], the nucleotides U(34)U(35)C(36)A(37)C(38) are required for optimal gamma-toxin cleavage, whereas a purine at position 32 or a G in position 33 dramatically reduces the cleavage of the ASL. Comparing modified and partially modified forms of E. coli and yeast [see text] reinforced the strong stimulatory effects of the mcm(5) group, revealed a weak positive effect of the s(2) group and a negative effect of the bacterial 5-methylaminomethyl (mnm(5)) group. The data underscore the high specificity of this yeast tRNA toxin.
  •  
5.
  • Tükenmez, Hasan, et al. (författare)
  • The role of wobble uridine modifications in +1 translational frameshifting in eukaryotes
  • 2015
  • Ingår i: Nucleic Acids Research. - : Oxford University Press (OUP). - 0305-1048 .- 1362-4962. ; 43:19, s. 9489-9499
  • Tidskriftsartikel (refereegranskat)abstract
    • In Saccharomyces cerevisiae, 11 out of 42 tRNA species contain 5-methoxycarbonylmethyl-2-thiouridine (mcm5s2U), 5-methoxycarbonylmethyluridine (mcm5U), 5-carbamoylmethyluridine (ncm5U) or 5-carbamoylmethyl-2′-O-methyluridine (ncm5Um) nucleosides in the anticodon at the wobble position (U34). Earlier we showed that mutants unable to form the side chain at position 5 (ncm5 or mcm5) or lacking sulphur at position 2 (s2) of U34 result in pleiotropic phenotypes, which are all suppressed by overexpression of hypomodified tRNAs. This observation suggests that the observed phenotypes are due to inefficient reading of cognate codons or an increased frameshifting. The latter may be caused by a ternary complex (aminoacyl-tRNA*eEF1A*GTP) with a modification deficient tRNA inefficiently being accepted to the ribosomal A-site and thereby allowing an increased peptidyl-tRNA slippage and thus a frameshift error. In this study, we have investigated the role of wobble uridine modifications in reading frame maintenance, using either the Renilla/Firefly luciferase bicistronic reporter system or a modified Ty1 frameshifting site in a HIS4A::lacZ reporter system. We here show that the presence of mcm5 and s2 side groups at wobble uridines are important for reading frame maintenance and thus the aforementioned mutant phenotypes might partly be due to frameshift errors.
  •  
6.
  • Åström, S U, et al. (författare)
  • Genetic interactions between a null allele of the RIT1 gene encoding an initiator tRNA-specific modification enzyme and genes encoding translation factors in Saccharomyces cerevisiae
  • 1999
  • Ingår i: Molecular General Genetics. - : Springer. - 0026-8925 .- 1432-1874. ; 261:6, s. 967-976
  • Tidskriftsartikel (refereegranskat)abstract
    • The Saccharomyces cerevisiae gene RIT1 encodes a phospho-ribosyl transferase that exclusively modifies the initiator tRNA (tRNAMet(i)) by the addition of a 2'-O-ribosyl phosphate group to Adenosine 64. As a result, tRNAMet(i) is prevented from participating in the elongation steps of protein synthesis. We previously showed that the modification is not essential for the function of tRNAMet(i) in the initiation of translation, since rit1 null strains are viable and show no obvious growth defects. Here, we demonstrate that yeast strains in which a rit1 null allele is combined with mutations in any of the genes for the three subunits of eukaryotic initiation factor-2 (eIF-2), or with disruption alleles of two of the four initiator methionine tRNA (IMT) genes, show synergistic growth defects. A multicopy plasmid carrying an IMT gene can alleviate these defects. On the other hand, introduction of a high-copy-number plasmid carrying the TEF2 gene, which encodes the eukaryotic elongation factor 1alpha (eEF-1alpha), into rit1 null strains with two intact IMT genes had the opposite effect, indicating that increased levels of eEF-1alpha are deleterious to these strains, presumably due to sequestration of the unmodified met-tRNAMet(i) for elongation. Thus, under conditions in which the components of the ternary met-tRNAMet(i):GTP:eIF-2 complex become limiting or are functionally impaired, the presence of the 2'-O-ribosyl phosphate modification in tRNAMet(i) is important for the provision of adequate amounts of tRNAMet(i) for formation of this ternary complex.
  •  
7.
  • Björk, Glenn R, et al. (författare)
  • A primordial tRNA modification required for the evolution of life?
  • 2001
  • Ingår i: EMBO Journal. - : Wiley. - 0261-4189 .- 1460-2075. ; 20:1-2, s. 231-239
  • Tidskriftsartikel (refereegranskat)abstract
    • The evolution of reading frame maintenance must have been an early event, and presumably preceded the emergence of the three domains Archaea, Bacteria and Eukarya. Features evolved early in reading frame maintenance may still exist in present-day organisms. We show that one such feature may be the modified nucleoside 1-methylguanosine (m(1)G37), which prevents frameshifting and is present adjacent to and 3' of the anticodon (position 37) in the same subset of tRNAs from all organisms, including that with the smallest sequenced genome (Mycoplasma genitalium), and organelles. We have identified the genes encoding the enzyme tRNA(m(1)G37)methyltransferase from all three domains. We also show that they are orthologues, and suggest that they originated from a primordial gene. Lack of m(1)G37 severely impairs the growth of a bacterium and a eukaryote to a similar degree. Yeast tRNA(m(1)G37)methyltransferase also synthesizes 1-methylinosine and participates in the formation of the Y-base (yW). Our results suggest that m(1)G37 existed in tRNA before the divergence of the three domains, and that a tRNA(m(1)G37)methyltrans ferase is part of the minimal set of gene products required for life.
  •  
8.
  • Björk, Glenn R, et al. (författare)
  • Prevention of translational frameshifting by the modified nucleoside 1-methylguanosine
  • 1989
  • Ingår i: Science. - 0036-8075 .- 1095-9203. ; 244:4907, s. 986-989
  • Tidskriftsartikel (refereegranskat)abstract
    • The methylated nucleoside 1-methylguanosine (m1G) is present next to the 3' end of the anticodon (position 37) in all transfer RNAs (tRNAs) that read codons starting with C except in those tRNAs that read CAN codons. All of the three proline tRNA species, which read CCN codons in Salmonella typhimurium, have been sequenced and shown to contain m1G in position 37. A mutant of S. typhimurium that lacks m1G in its tRNA when grown at temperatures above 37 degrees C, has now been isolated. The mutation (trmD3) responsible for this methylation deficiency is in the structural gene (trmD) for the tRNA(m1G37)methyltransferase. Therefore, the three proline tRNAs in the trmD3 mutant have an unmodified guanosine at position 37. Furthermore, the trmD3 mutation also causes at least one of the tRNAPro species to frequently shift frame when C's are present successively in the message. Thus, m1G appears to prevent frameshifting. The data from eubacteria apply to both eukaryotes and archaebacteria.
  •  
9.
  • Byström, Anders S., et al. (författare)
  • A functional analysis of the repeated methionine initiator tRNA genes (IMT) in yeast
  • 1989
  • Ingår i: Molecular General Genetics. - 0026-8925 .- 1432-1874. ; 216:2-3, s. 276-286
  • Tidskriftsartikel (refereegranskat)abstract
    • Standard laboratory yeast strains have from four to five genes encoding the methionine initiator tRNA (IMT). Strain S288C has four IMT genes with identical coding sequences that are colinear with the RNA sequence of tRNA(IMet). Each of the four IMT genes from strain S288C is located on a different chromosome. A fifth IMT gene with the same coding sequence is present in strain A364A but not in S288C. By making combinations of null alleles in strain S288C, we show that each of the four IMT genes is functional and that tRNA(IMet) is not limiting in yeast strains with three or more intact genes. Strains containing a single IMT2, 3 or 4 gene grow only after amplification of the remaining IMT gene. Strains with only the IMT1 gene intact are viable but grow extremely slow; normal growth is restored by the addition of another IMT gene by transformation, providing a direct test for IMT function.
  •  
10.
  • Byström, Anders S, et al. (författare)
  • Differentially expressed trmD ribosomal protein operon of Escherichia coli is transcribed as a single polycistronic mRNA species
  • 1989
  • Ingår i: Journal of Molecular Biology. - : Academic Press. - 0022-2836 .- 1089-8638. ; 208:4, s. 575-586
  • Tidskriftsartikel (refereegranskat)abstract
    • The trmD operon is a four-cistron operon in which the first and fourth genes encode ribosomal proteins S16 (rpsP) and L19 (rplS), respectively. The second gene encodes a 21,000 Mr polypeptide of unknown function and the third gene (trmD) encodes the enzyme tRNA(m1G37)methyltransferase, which catalyzes the formation of 1-methylguanosine (m1G) next to the 3' end of the anticodon (position 37) of some tRNAs in Escherichia coli. Here we show under all regulatory conditions studied, transcription initiates at one unique site, and the entire operon is transcribed into one polycistronic mRNA. Between the promoter and the first gene, rpsP, an attenuator-like structure is found (delta G = -18 kcal; 1 cal = 4.184 J), followed by four uridine residues. This structure is functional in vitro, and terminates more than two-thirds of the transcripts. The different parts of the trmD operon mRNA decay at a uniform rate. The stability of the trmD mRNA is not reduced with decreasing growth rate, which is in contrast to what has been found for other ribosomal protein mRNAs. Furthermore, earlier experiments have shown the existence of differential expression as well as non-co-ordinate regulation within the operon. Our results are consistent with the regulation of the trmD operon being due to some mechanism(s) operating at the post-transcriptional level, and do not involve differential degradation of different mRNA segments, internal promoters or internal terminators.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 40

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy