SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Cabrera Ziri Ivan) "

Sökning: WFRF:(Cabrera Ziri Ivan)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kamann, Sebastian, et al. (författare)
  • Exploring the role of binarity in the origin of the bimodal rotational velocity distribution in stellar clusters
  • 2021
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 508:2, s. 2302-2306
  • Tidskriftsartikel (refereegranskat)abstract
    • Many young- and intermediate-age massive stellar clusters host bimodal distributions in the rotation rates of their stellar populations, with a dominant peak of rapidly rotating stars and a secondary peak of slow rotators. The origin of this bimodal rotational distribution is currently debated and two main theories have been put forward in the literature. The first is that all/most stars are born as rapid rotators and that interacting binaries break a fraction of the stars, resulting in two populations. The second is that the rotational distribution is a reflection of the early evolution of pre-main sequence stars, in particular, whether they are able to retain or lose their protoplanetary discs during the first few Myr. Here, we test the binary channel by exploiting multi-epoch Very Large Telescope/MUSE observations of NGC 1850, an similar to 100 Myr massive cluster in the Large Magellanic Cloud, to search for differences in the binary fractions of the slow- and fast-rotating populations. If binarity is the cause of the rotational bimodality, we would expect that the slowly rotating population should have a much larger binary fraction than the rapid rotators. However, in our data we detect similar fractions of binary stars in the slow and rapidly rotating populations (5.9 +/- 1.1 and 4.5 +/- 0.6 per cent, respectively). Hence, we conclude that binarity is not a dominant mechanism in the formation of the observed bimodal rotational distributions.
  •  
2.
  • Usher, Christopher, 1985-, et al. (författare)
  • Measuring M31 globular cluster ages and metallicities using both photometry and spectroscopy
  • 2024
  • Ingår i: Monthly notices of the Royal Astronomical Society. - 0035-8711 .- 1365-2966. ; 528:4, s. 6010-6024
  • Tidskriftsartikel (refereegranskat)abstract
    • The ages and metallicities of globular clusters play an important role not just in testing models for their formation and evolution but also in understanding the assembly history of their host galaxies. Here, we use a combination of imaging and spectroscopy to measure the ages and metallicities of globular clusters in M31, the closest massive galaxy to our own. We use the strength of the near-infrared calcium triplet spectral feature to provide a relatively age-insensitive prior on the metallicity when fitting stellar population models to the observed photometry. While the age–extinction degeneracy is an issue for globular clusters projected on to the disc of M31, we find generally old ages for globular clusters in the halo of M31 and in its satellite galaxy NGC 205 in line with previous studies. We measure ages for a number of outer halo globular clusters for the first time, finding that globular clusters associated with halo substructure extend to younger ages and higher metallicities than those associated with the smooth halo. This is in line with the expectation that the smooth halo was accreted earlier than the substructured halo.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy