SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Cai Weihua) "

Sökning: WFRF:(Cai Weihua)

  • Resultat 1-10 av 14
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Chen, Yicheng, et al. (författare)
  • Computational fluid-structure interaction analysis of flapping uvula on aerodynamics and pharyngeal vibration in a pediatric airway
  • 2023
  • Ingår i: Scientific Reports. - : Nature Publishing Group. - 2045-2322. ; 13:1, s. 2013-
  • Tidskriftsartikel (refereegranskat)abstract
    • The uvula flapping is one of the most distinctive features of snoring and is critical in affecting airway aerodynamics and vibrations. This study aimed to elucidate the mechanism of pharyngeal vibration and pressure fluctuation due to uvula flapping employing fluid-structure interaction simulations. The followings are the methodology part: we constructed an anatomically accurate pediatric pharynx model and put attention on the oropharynx region where the greatest level of upper airway compliance was reported to occur. The uvula was assumed to be a rigid body with specific flapping frequencies to guarantee proper boundary conditions with as little complexity as possible. The airway tissue was considered to have a uniform thickness. It was found that the flapping frequency had a more significant effect on the airway vibration than the flapping amplitude, as the flapping uvula influenced the pharyngeal aerodynamics by altering the jet flow from the mouth. Breathing only through the mouth could amplify the effect of flapping uvula on aerodynamic changes and result in more significant oropharynx vibration.
  •  
2.
  • Chen, Yicheng, et al. (författare)
  • Evaluation of computational fluid dynamics models for predicting pediatric upper airway airflow characteristics
  • 2023
  • Ingår i: Medical and Biological Engineering and Computing. - : Springer. - 0140-0118 .- 1741-0444. ; 61:1, s. 259-270
  • Tidskriftsartikel (refereegranskat)abstract
    • Computational fluid dynamics (CFD) has the potential for use as a clinical tool to predict the aerodynamics and respiratory function in the upper airway (UA) of children; however, careful selection of validated computational models is necessary. This study constructed a 3D model of the pediatric UA based on cone beam computed tomography (CBCT) imaging. The pediatric UA was 3D printed for pressure and velocity experiments, which were used as reference standards to validate the CFD simulation models. Static wall pressure and velocity distribution inside of the UA under inhale airflow rates from 0 to 266.67 mL/s were studied by CFD simulations based on the large eddy simulation (LES) model and four Reynolds-averaged Navier-Stokes (RANS) models. Our results showed that the LES performed best for pressure prediction; however, it was much more time-consuming than the four RANS models. Among the RANS models, the Low Reynolds number (LRN) SST k-ω model had the best overall performance at a series of airflow rates. Central flow velocity determined by particle image velocimetry was 3.617 m/s, while velocities predicted by the LES, LRN SST k-ω, and k-ω models were 3.681, 3.532, and 3.439 m/s, respectively. All models predicted jet flow in the oropharynx. These results suggest that the above CFD models have acceptable accuracy for predicting pediatric UA aerodynamics and that the LRN SST k-ω model has the most potential for clinical application in pediatric respiratory studies.
  •  
3.
  • Chen, Yicheng, et al. (författare)
  • Impact of palatopharyngeal sizes changing on pharyngeal airflow fluctuation and airway vibration in a pediatric airway
  • 2024
  • Ingår i: Journal of Biomechanics. - : Elsevier. - 0021-9290 .- 1873-2380. ; 168, s. 112111-112111
  • Tidskriftsartikel (refereegranskat)abstract
    • Snoring is common in children and is associated with many adverse consequences. One must study the relationships between pharyngeal morphology and snoring physics to understand snoring progression. Although some model studies have provided fluid–structure interaction dynamic descriptions for the correlation between airway size and snoring physics, the descriptions still need to be further investigated in patient-specific airway models. Fluid-structure interaction studies using patient-specific airway structures complement the above model studies. Based on reported cephalometric measurement methods, this study quantified and preset the size of the palatopharynx airway in a patient-specific airway and investigated how the palatopharynx size affects the pharyngeal airflow fluctuation, soft palate vibration, and glossopharynx vibration with the help of a verified FSI method. The results showed that the stenosis anterior airway of the soft palate increased airway resistance and airway resistance fluctuations, which can lead to increased sleep effort and frequent snoring. Widening of the anterior airway can reduce airflow resistance and avoid obstructing the anterior airway by the soft palate vibration. The pharyngeal airflow resistance, mouth inflow proportion, and soft palate apex displacement have components at the same frequencies in all airway models, and the glossopharynx vibration and instantaneous inflow rate have components at the same frequencies, too. The mechanism of this same frequency fluctuation phenomenon can be explained by the fluid–structure interaction dynamics of an ideal coupled model consisting of a flexible plate model and a collapsible tube model. The results of this study demonstrate the potential of FSI in studying snoring physics and clarify to some degree the mechanism of airway morphology affecting airway vibration physics.
  •  
4.
  • Chen, Yicheng, et al. (författare)
  • Impact of sleep posture and breathing pattern on soft palate flutter and pharynx vibration in a pediatric airway using fluid-structure interaction
  • 2023
  • Ingår i: Journal of Biomechanics. - : Elsevier. - 0021-9290 .- 1873-2380. ; 152
  • Tidskriftsartikel (refereegranskat)abstract
    • Snoring is a common condition in the general population, and the management of snoring requires a better understanding of its mechanism through a fluid-structure interaction (FSI) perspective. Despite the recent popularity of numerical FSI techniques, outstanding challenges are accurately predicting airway deformation and its vibration during snoring due to complex airway morphology. In addition, there still needs to be more un-derstanding of snoring inhibition when lying on the side, and the possible effect of airflow rates, as well as nose or mouth-nose breathing, on snoring remains to be investigated. In this study, an FSI method verified against in vitro models was introduced to predict upper airway deformation and vibration. The technique was applied to predict airway aerodynamics, soft palate flutter, and airway vibration in four sleep postures (supine, left/right lying, and sitting positions) and four breathing patterns (mouth-nose, nose, mouth, and unilateral nose breathing). It was found that, at given elastic properties of soft tissues, the evaluated flutter frequency of 19.8 Hz in inspiration was in good agreement with the reported frequency of snoring sound in literature. Reduction in flutter and vibrations due to the mouth-nose airflow proportion changes were also noticed when having side-lying and sitting positions. Breathing through the mouth results in larger airway deformation than breathing through the nose or mouth-nose. These results collectively demonstrate the potential of FSI for studying the physics of airway vibration and clarify to some degree the reason for snoring inhibition during sleep postures and breathing patterns.
  •  
5.
  • Feitosa, Mary F., et al. (författare)
  • Novel genetic associations for blood pressure identified via gene-alcohol interaction in up to 570K individuals across multiple ancestries
  • 2018
  • Ingår i: PLOS ONE. - : Public library science. - 1932-6203. ; 13:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Heavy alcohol consumption is an established risk factor for hypertension; the mechanism by which alcohol consumption impact blood pressure (BP) regulation remains unknown. We hypothesized that a genome-wide association study accounting for gene-alcohol consumption interaction for BP might identify additional BP loci and contribute to the understanding of alcohol-related BP regulation. We conducted a large two-stage investigation incorporating joint testing of main genetic effects and single nucleotide variant (SNV)-alcohol consumption interactions. In Stage 1, genome-wide discovery meta-analyses in approximate to 131 K individuals across several ancestry groups yielded 3,514 SNVs (245 loci) with suggestive evidence of association (P <1.0 x 10(-5)). In Stage 2, these SNVs were tested for independent external replication in individuals across multiple ancestries. We identified and replicated (at Bonferroni correction threshold) five novel BP loci (380 SNVs in 21 genes) and 49 previously reported BP loci (2,159 SNVs in 109 genes) in European ancestry, and in multi-ancestry meta-analyses (P < 5.0 x 10(-8)). For African ancestry samples, we detected 18 potentially novel BP loci (P< 5.0 x 10(-8)) in Stage 1 that warrant further replication. Additionally, correlated meta-analysis identified eight novel BP loci (11 genes). Several genes in these loci (e.g., PINX1, GATA4, BLK, FTO and GABBR2 have been previously reported to be associated with alcohol consumption. These findings provide insights into the role of alcohol consumption in the genetic architecture of hypertension.
  •  
6.
  • Feng, Xin, et al. (författare)
  • Aerodynamic characteristics in upper airways among orthodontic patients and its association with adenoid nasopharyngeal ratios in lateral cephalograms
  • 2021
  • Ingår i: BMC Medical Imaging. - : BioMed Central. - 1471-2342. ; 21:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Adenoid hypertrophy among orthodontic patients may be detected in lateral cephalograms. The study investigates the aerodynamic characteristics within the upper airway (UA) by means of computational fluid dynamics (CFD) simulation. Furthermore, airflow features are compared between subgroups according to the adenoidal nasopharyngeal (AN) ratios. Methods This retrospective study included thirty-five patients aged 9-15 years having both lateral cephalogram and cone beam computed tomography (CBCT) imaging that covered the UA region. The cases were divided into two subgroups according to the AN ratios measured on the lateral cephalograms: Group 1 with an AN ratio < 0.6 and Group 2 with an AN ratio >= 0.6. Based on the CBCT images, segmented UA models were created and the aerodynamic characteristics at inspiration and expiration were simulated by the CFD method for the two groups. The studied aerodynamic parameters were pressure drop (Delta P), maximum midsagittal velocity (V-ms), maximum wall shear stress (P-ws), and minimum wall static pressure (P-w). Results The maximum V-ms exhibits nearly 30% increases in Group 2 at both inspiration (p = 0.013) and expiration (p = 0.045) compared to Group 1. For the other aerodynamic parameters such as Delta P, the maximum P-ws, and minimum P-w, no significant difference is found between the two groups. Conclusions The maximum V-ms seems to be the most sensitive aerodynamic parameter for the groups of cases. An AN ratio of more than 0.6 measured on a lateral cephalogram may associate with a noticeably increased maximum V-ms, which could assist clinicians in estimating the airflow features in the UA.
  •  
7.
  • Feng, Xin, et al. (författare)
  • The effect of rapid maxillary expansion on the upper airway's aerodynamic characteristics
  • 2021
  • Ingår i: BMC Oral Health. - : BioMed Central. - 1472-6831. ; 21:1
  • Tidskriftsartikel (refereegranskat)abstract
    • BackgroundThe effect of rapid maxillary expansion (RME) on the upper airway (UA) has been studied earlier but without a consistent conclusion. This study aims to evaluate the outcome of RME on the UA function in terms of aerodynamic characteristics by applying a computational fluid dynamics (CFD) simulation.MethodsThis retrospective cohort study consists of seventeen cases with two consecutive CBCT scans obtained before (T0) and after (T1) RME. Patients were divided into two groups with respect to patency of the nasopharyngeal airway as expressed in the adenoidal nasopharyngeal ratio (AN): group 1 was comprised of patients with an AN ratio<0.6 and group 2 encompassing those with an AN ratio0.6. CFD simulation at inspiration and expiration were performed based on the three-dimensional (3D) models of the UA segmented from the CBCT images. The aerodynamic characteristics in terms of pressure drop (Delta P), maximum midsagittal velocity (V-ms), and maximum wall shear stress (P-ws) were compared by paired t-test and Wilcoxon test according to the normality test at T0 and T1.ResultsThe aerodynamic characteristics in UA revealed no statistically significant difference after RME. The maximum V-ms (m/s) decreased from 2.79 to 2.28 at expiration after RME (P=0.057).ConclusionThe aerodynamic characteristics were not significantly changed after RME. Further CFD studies with more cases are warranted.
  •  
8.
  • Geng, Huifang, et al. (författare)
  • Controlled synthesis of highly stable lead-free bismuth halide perovskite nanocrystals : tructures and photophysics
  • 2023
  • Ingår i: SCIENCE CHINA Materials. - : Springer Science and Business Media LLC. - 2095-8226 .- 2199-4501. ; 66:5, s. 2079-2089
  • Tidskriftsartikel (refereegranskat)abstract
    • Recently, cesium bismuth halide perovskites have emerged as potential substitutes to their counterparts, cesium lead halide perovskites, owing to their low toxicity. However, the photophysics of cesium-bismuth halides nanocrystals (NCs) have not yet been fully rationalized because their structures remain highly debated. The ultraviolet-visible (UV-vis) absorption along with other photophysical properties such as the nature and lifetime of the excited states vary considerably across the previous reports. Here, we successfully synthesize pure Cs3BiBr6 and Cs3Bi2Br9 NCs via a modified hot-injection method, where the structure can be easily controlled by tuning the reaction temperature. The UV-vis absorption spectrum of the pure Cs3Bi2Br9 NCs features two characteristic peaks originating from the absorption of the first exciton and second exciton, respectively, which ultimately clarifies the debate in the previous reports. Using femtosecond transient absorption spectroscopy, we systematically investigate the excited state dynamics of the Cs3Bi2Br9 NCs and reveal that the photoexcited carriers undergo a self-trapping process within 3 ps after excitation. More intriguingly, the Cs3Bi2Br9 NCs prepared by this method show much better photostability than those prepared by the ligand-assisted reprecipitation process. Photodetectors based on these Cs3Bi2Br9 NCs show a sensitive light response, demonstrating the definite potential for breakthrough optoelectronic applications. [Figure not available: see fulltext.].
  •  
9.
  • Ji, Fuxiang, 1991-, et al. (författare)
  • Remarkable Thermochromism in the Double Perovskite Cs2NaFeCl6
  • 2023
  • Ingår i: Advanced Optical Materials. - : Wiley-Blackwell. - 2162-7568 .- 2195-1071.
  • Tidskriftsartikel (refereegranskat)abstract
    • Lead-free halide double perovskites (HDPs) have emerged as a new generation of thermochromic materials. However, further materials development and mechanistic understanding are required. Here, a highly stable HDP Cs2NaFeCl6 single crystal is synthesized, and its remarkable and fully reversible thermochromism with a wide color variation from light-yellow to black over a temperature range of 10 to 423 K is investigated. First-principles, density functional theory (DFT)-based calculations indicate that the thermochromism in Cs2NaFeCl6 is an effect of electron–phonon coupling. The temperature sensitivity of the bandgap in Cs2NaFeCl6 is up to 2.52 meVK−1 based on the Varshni equation, which is significantly higher than that of lead halide perovskites and many conventional group-IV, III–V semiconductors. Meanwhile, this material shows excellent environmental, thermal, and thermochromic cycle stability. This work provides valuable insights into HDPs' thermochromism and sheds new light on developing efficient thermochromic materials.
  •  
10.
  • Ji, Fuxiang, 1991-, et al. (författare)
  • Remarkable Thermochromism in the Double Perovskite Cs2NaFeCl6
  • 2024
  • Ingår i: Advanced Optical Materials. - : John Wiley & Sons. - 2162-7568 .- 2195-1071. ; 12:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Lead-free halide double perovskites (HDPs) have emerged as a new generation of thermochromic materials. However, further materials development and mechanistic understanding are required. Here, a highly stable HDP Cs2NaFeCl6 single crystal is synthesized, and its remarkable and fully reversible thermochromism with a wide color variation from light-yellow to black over a temperature range of 10 to 423 K is investigated. First-principles, density functional theory (DFT)-based calculations indicate that the thermochromism in Cs2NaFeCl6 is an effect of electron-phonon coupling. The temperature sensitivity of the bandgap in Cs2NaFeCl6 is up to 2.52 meVK(-1) based on the Varshni equation, which is significantly higher than that of lead halide perovskites and many conventional group-IV, III-V semiconductors. Meanwhile, this material shows excellent environmental, thermal, and thermochromic cycle stability. This work provides valuable insights into HDPs' thermochromism and sheds new light on developing efficient thermochromic materials.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 14
Typ av publikation
tidskriftsartikel (14)
Typ av innehåll
refereegranskat (14)
Författare/redaktör
Raitakari, Olli T (3)
Franks, Paul W. (3)
Shu, Xiao-Ou (3)
Zheng, Wei (3)
Mohlke, Karen L (3)
Gieger, Christian (3)
visa fler...
Peters, Annette (3)
Samani, Nilesh J. (3)
Luan, Jian'an (3)
Zheng, Kaibo (2)
Nabika, Toru (2)
Deloukas, Panos (2)
Wareham, Nicholas J. (2)
Kuusisto, Johanna (2)
Laakso, Markku (2)
McCarthy, Mark I (2)
Linneberg, Allan (2)
Grarup, Niels (2)
Pedersen, Oluf (2)
Hansen, Torben (2)
Ridker, Paul M. (2)
Chasman, Daniel I. (2)
Ikram, M. Arfan (2)
van Duijn, Cornelia ... (2)
Langenberg, Claudia (2)
Magnusson, Patrik K ... (2)
Pedersen, Nancy L (2)
Boehnke, Michael (2)
Scott, Robert A (2)
Zhao, Wei (2)
Saleheen, Danish (2)
Buyanova, Irina A, 1 ... (2)
Fahlman, Mats, 1967- (2)
Verweij, Niek (2)
Rotter, Jerome I. (2)
Nelson, Christopher ... (2)
Waldenberger, Melani ... (2)
Jarvelin, Marjo-Riit ... (2)
Nikus, Kjell (2)
Metspalu, Andres (2)
Brown, Morris (2)
Caulfield, Mark J. (2)
Munroe, Patricia B. (2)
Lin, Weihua (2)
Sun, Licheng (2)
Meitinger, Thomas (2)
Kooperberg, Charles (2)
Zhang, Bin (2)
Deary, Ian J (2)
Tang, Hua (2)
visa färre...
Lärosäte
Malmö universitet (6)
Lunds universitet (5)
Linköpings universitet (4)
Umeå universitet (2)
Uppsala universitet (2)
Karolinska Institutet (2)
visa fler...
Göteborgs universitet (1)
visa färre...
Språk
Engelska (14)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (8)
Naturvetenskap (4)
Teknik (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy