SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Caldez Matias J.) "

Sökning: WFRF:(Caldez Matias J.)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Caldez, Matias J, et al. (författare)
  • Cell cycle regulation in NAFLD: when imbalanced metabolism limits cell division : when imbalanced metabolism limits cell division
  • 2020
  • Ingår i: Hepatology international. - : Springer Science and Business Media LLC. - 1936-0533 .- 1936-0541. ; 14:4, s. 463-474
  • Forskningsöversikt (refereegranskat)abstract
    • Cell division is essential for organismal growth and tissue homeostasis. It is exceptionally significant in tissues chronically exposed to intrinsic and external damage, like the liver. After decades of studying the regulation of cell cycle by extracellular signals, there are still gaps in our knowledge on how these two interact with metabolic pathways in vivo. Studying the cross-talk of these pathways has direct clinical implications as defects in cell division, signaling pathways, and metabolic homeostasis are frequently observed in liver diseases. In this review, we will focus on recent reports which describe various functions of cell cycle regulators in hepatic homeostasis. We will describe the interplay between the cell cycle and metabolism during liver regeneration after acute and chronic damage. We will focus our attention on non-alcoholic fatty liver disease, especially non-alcoholic steatohepatitis. The global incidence of non-alcoholic fatty liver disease is increasing exponentially. Therefore, understanding the interplay between cell cycle regulators and metabolism may lead to the discovery of novel therapeutic targets amenable to intervention.
  •  
2.
  • Niska-Blakie, Joanna, et al. (författare)
  • Knockout of the non-essential gene SUGCT creates diet-linked, age-related microbiome disbalance with a diabetes-like metabolic syndrome phenotype
  • 2019
  • Ingår i: Cellular and Molecular Life Sciences. - : Springer Science and Business Media LLC. - 1420-682X .- 1420-9071.
  • Tidskriftsartikel (refereegranskat)abstract
    • SUGCT (C7orf10) is a mitochondrial enzyme that synthesizes glutaryl-CoA from glutarate in tryptophan and lysine catabolism, but it has not been studied in vivo. Although mutations in Sugct lead to Glutaric Aciduria Type 3 disease in humans, patients remain largely asymptomatic despite high levels of glutarate in the urine. To study the disease mechanism, we generated SugctKO mice and uncovered imbalanced lipid and acylcarnitine metabolism in kidney in addition to changes in the gut microbiome. After SugctKO mice were treated with antibiotics, metabolites were comparable to WT, indicating that the microbiome affects metabolism in SugctKO mice. SUGCT loss of function contributes to gut microbiota dysbiosis, leading to age-dependent pathological changes in kidney, liver, and adipose tissue. This is associated with an obesity-related phenotype that is accompanied by lipid accumulation in kidney and liver, as well as “crown-like” structures in adipocytes. Furthermore, we show that the SugctKO kidney pathology is accelerated and exacerbated by a high-lysine diet. Our study highlights the importance of non-essential genes with no readily detectable early phenotype, but with substantial contributions to the development of age-related pathologies, which result from an interplay between genetic background, microbiome, and diet in the health of mammals.
  •  
3.
  • Xu, Jianliang, et al. (författare)
  • Protective functions of ZO-2/Tjp2 expressed in hepatocytes and cholangiocytes against liver injury and cholestasis
  • 2021
  • Ingår i: Gastroenterology. - : Elsevier BV. - 1528-0012 .- 0016-5085. ; 160:6, s. 2103-2118
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND & AIMS: Liver tight junctions (TJs) establish tissue barriers that isolate bile from the blood circulation. TJP2/ZO-2-inactivating mutations cause progressive cholestatic liver disease in humans. Since the underlying mechanisms remain elusive, we characterized mice with liver-specific inactivation of Tjp2.METHODS: Tjp2 was deleted in hepatocytes, cholangiocytes, or both. Effects on the liver were assessed by biochemical analyses of plasma, liver and bile and .by EM, histology and immunostaining. TJ barrier permeability was evaluated using FITC-Dextran (4kDa). Cholic acid (CA) diet was used to assess susceptibility to liver injury.RESULTS: Liver-specific deletion of Tjp2 resulted in lower Cldn1 protein levels, minor changes to the TJ, dilated canaliculi, lower microvilli density and aberrant Radixin and BSEP distribution, without an overt increase in TJ permeability. Hepatic Tjp2-defcient mice presented with mild progressive cholestasis with lower expression levels of bile acid (BA) transporter Abcb11/Bsep and detoxification enzyme Cyp2b10. A CA-diet tolerated by control mice caused severe cholestasis and liver necrosis in Tjp2-deficient animals. TCPOBOP ameliorated CA-induced injury by enhancing Cyp2b10 expression and ursodeoxycholic acid provided partial improvement. Inactivating Tjp2 separately in hepatocytes or cholangiocytes only showed mild CA-induced liver injury.CONCLUSION: Tjp2 is required for normal cortical distribution of Radixin, canalicular volume regulation and microvilli density, Its inactivation deregulated expression of Cldn1 and key BA transporters and detoxification enzymes. The mice provide a novel animal model for cholestatic liver disease caused by TJP2-inactivating mutations in humans.
  •  
4.
  • Zhao, Li Na, et al. (författare)
  • Therapeutic targeting of the mitochondrial one-carbon pathway: perspectives, pitfalls, and potential
  • 2021
  • Ingår i: Oncogene. - : Springer Science and Business Media LLC. - 1476-5594 .- 0950-9232.
  • Forskningsöversikt (refereegranskat)abstract
    • Most of the drugs currently prescribed for cancer treatment are riddled with substantial side effects. In order to develop more effective and specific strategies to treat cancer, it is of importance to understand the biology of drug targets, particularly the newly emerging ones. A comprehensive evaluation of these targets will benefit drug development with increased likelihood for success in clinical trials. The folate-mediated one-carbon (1C) metabolism pathway has drawn renewed attention as it is often hyperactivated in cancer and inhibition of this pathway displays promise in developing anticancer treatment with fewer side effects. Here, we systematically review individual enzymes in the 1C pathway and their compartmentalization to mitochondria and cytosol. Based on these insight, we conclude that (1) except the known 1C targets (DHFR, GART, and TYMS), MTHFD2 emerges as good drug target, especially for treating hematopoietic cancers such as CLL, AML, and T-cell lymphoma; (2) SHMT2 and MTHFD1L are potential drug targets; and (3) MTHFD2L and ALDH1L2 should not be considered as drug targets. We highlight MTHFD2 as an excellent therapeutic target and SHMT2 as a complementary target based on structural/biochemical considerations and up-to-date inhibitor development, which underscores the perspectives of their therapeutic potential.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy