SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Calvén Jenny) "

Sökning: WFRF:(Calvén Jenny)

  • Resultat 1-10 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Boberg, Emma, et al. (författare)
  • Interplay Between the IL-33/ST2 Axis and Bone Marrow ILC2s in Protease Allergen-Induced IL-5-Dependent Eosinophilia
  • 2020
  • Ingår i: Frontiers in Immunology. - : Frontiers Media SA. - 1664-3224. ; 11
  • Tidskriftsartikel (refereegranskat)abstract
    • Background:Eosinophils develop from CD34(+)progenitor cells in the bone marrow under the influence of interleukin (IL)-5. Several cell types produce IL-5, including type 2 innate lymphoid cells (ILC2s). The alarmin cytokine IL-33 is known to activate ILC2s in mucosal tissues, but little is known about IL-33-responsive ILC2s in the bone marrow in allergen-induced airway inflammation. Methods:Wild type (WT) and Rag1 deficient (Rag1(-/-)) mice, which lack mature T and B cells, received intranasal doses of papain to induce acute allergic inflammation. In some experiments, mice were pre-treated with anti-IL-5 prior to the papain challenge. Furthermore, recombinant IL-33 was administered to WT mice,Rag1(-/-)mice, lymphocyte deficient mice (Rag2(-/-)Il2rg(-/-)) and toex vivowhole bone marrow cultures. Bone marrow eosinophils and ILC2s were analyzed by flow cytometry. Eosinophil count was assessed by differential cell count and secreted IL-5 from bone marrow cells by ELISA. Results:Intranasal administration of papain or IL-33 increased the number of mature eosinophils in the bone marrow despite the absence of adaptive immune cells inRag1(-/-)mice. In parallel, an increased number of eosinophils was observed in the airways together with elevated levels of Eotaxin-2/CCL24. Bone marrow ILC2s were increased after papain or IL-33 administration, whereas ILC2s was found to be increased at baseline inRag1(-/-)mice compared to WT mice. An upregulation of the IL-33 receptor (ST2) expression on bone marrow ILC2s was observed after papain challenge in bothRag1(-/-)and WT mice which correlated to increased number of bone marrow eosinophilia. Furthermore, an increased number of ST2(+)mature eosinophils in the bone marrow was observed after papain challenge, which was further dependent on IL-5. In addition, bone marrow-derived ILC2s from both mouse strains produced large amounts of IL-5ex vivoafter IL-33 stimulation of whole bone marrow cultures. In contrast, IL-33-induced bone marrow and airway eosinophilia were abolished in the absence of ILC2s inRag2(-/-)Il2rg(-/-)mice and no production of IL-5 was detected in IL-33-stimulated bone marrow cultures. Conclusion:These findings establish bone marrow ILC2s and the IL-33/ST2 axis as promising targets for modulation of uncontrolled IL-5-dependent eosinophilic diseases including asthma.
  •  
2.
  • Boberg, Emma, et al. (författare)
  • Rapamycin Dampens Inflammatory Properties of Bone Marrow ILC2s in IL-33-Induced Eosinophilic Airway Inflammation
  • 2022
  • Ingår i: Frontiers in Immunology. - : Frontiers Media SA. - 1664-3224. ; 13
  • Tidskriftsartikel (refereegranskat)abstract
    • The alarmin cytokine interleukin (IL)-33 plays an important proinflammatory role in type 2 immunity and can act on type 2 innate lymphoid cells (ILC2s) and type 2 T helper (T(H)2) cells in eosinophilic inflammation and asthma. The mechanistic target of rapamycin (mTOR) signaling pathway drives immune responses in several inflammatory diseases, but its role in regulating bone marrow responses to IL-33 is unclear. The aim of this study was to determine the role of the mTORC1 signaling pathway in IL-33-induced bone marrow ILC2 responses and its impact on IL-33-induced eosinophilia. Wild-type mice were intranasally exposed to IL-33 only or in combination with the mTORC1 inhibitor, rapamycin, intraperitoneally. Four groups were included in the study: saline-treated (PBS)+PBS, rapamycin+PBS, PBS+IL-33 and rapamycin+IL-33. Bronchoalveolar lavage fluid (BALF), serum and bone marrow cells were collected and analyzed by differential cell count, enzyme-linked immunosorbent assay and flow cytometry. IL-33 induced phosphorylation of the mTORC1 protein rpS6 in bone marrow ILC2s both ex vivo and in vivo. The observed mTOR signal was reduced by rapamycin treatment, indicating the sensitivity of bone marrow ILC2s to mTORC1 inhibition. IL-5 production by ILC2s was reduced in cultures treated with rapamycin before stimulation with IL-33 compared to IL-33 only. Bone marrow and airway eosinophils were reduced in mice given rapamycin before IL-33-exposure compared to mice given IL-33 only. Bone marrow ILC2s responded to IL-33 in vivo with increased mTORC1 activity and rapamycin treatment successfully decreased IL-33-induced eosinophilic inflammation, possibly by inhibition of IL-5-producing bone marrow ILC2s. These findings highlight the importance of investigating specific cells and proinflammatory pathways as potential drivers of inflammatory diseases, including asthma.
  •  
3.
  • Brandelius, Angelica, et al. (författare)
  • dsRNA-induced expression of thymic stromal lymphopoietin (TSLP) in asthmatic epithelial cells is inhibited by a small airway relaxant.
  • 2011
  • Ingår i: Pulmonary Pharmacology & Therapeutics. - : Elsevier BV. - 1522-9629 .- 1094-5539. ; 24, s. 59-66
  • Tidskriftsartikel (refereegranskat)abstract
    • RATIONALE: Thymic Stromal Lymphopoietin (TSLP) is considered a hub cytokine that activates dendritic cells and T-cells producing asthma-like Th(2)-inflammation. Viral stimuli, a major cause of asthma exacerbations, have been shown to induce overexpression of TSLP in asthmatic epithelium. Capsazepine has multiple effects and is of interest because it relaxes human small airways. Here we have explored effects of capsazepine on viral surrogate (dsRNA)-induced TSLP and other cytokines (TNF-alpha, IL-8) in human bronchial epithelial cells (HBEC) from healthy and asthmatic donors. METHODS: HBEC obtained from healthy and asthmatic subjects were grown and stimulated with dsRNA. Cells pre-treated with capsazepine (3-30μM), dexamethasone (0.1-10μM) or an IkappaB-kinase inhibitor (PS1145, 30μM) were also exposed to dsRNA (10μg/ml). Cells and supernatants were harvested for analyses of gene expression (RT-qPCR) and protein production (ELISA,Western blot). RESULTS: dsRNA-induced TSLP, TNF-alpha, and IL-8 in asthmatic and non-asthmatic HBEC. Dexamethasone attenuated gene expression and protein release whereas capsazepine dose-dependently, and similar to a non-relaxant NFkB inhibitor (PS1145), completely inhibited dsRNA-induced TSLP and TNF-alpha in both healthy and asthmatic HBEC. Capsazepine reduced dsRNA-induced IL-8 and it prevented dsRNA-induced loss of the NF-κB repressor protein IkBα. CONCLUSION: Additional to its human small airway relaxant effects we now demonstrate that capsazepine has potent anti-inflammatory effects on viral stimulus-induced cytokines in HBEC from healthy as well as asthmatic donors. Based on these data we suggest that exploration of structure-activity amongst the multifaceted capsazepinoids is warranted in search for compounds of therapeutic value in viral-induced, steroid-resistant asthma.
  •  
4.
  • Brandelius, Angelica, et al. (författare)
  • Selective inhibition by simvastatin of IRF3 phosphorylation and TSLP production in dsRNA-challenged bronchial epithelial cells from COPD donors.
  • 2012
  • Ingår i: British Journal of Pharmacology. - : Wiley. - 1476-5381 .- 0007-1188.
  • Tidskriftsartikel (refereegranskat)abstract
    • Background and purpose: Statin treatment may ameliorate viral infection-induced exacerbations of chronic obstructive pulmonary disease (COPD), which exhibit Th2-type bronchial inflammation. Thymic stromal lymphopoietin (TSLP), a hub cytokine switching on Th2-inflammation, is overproduced in viral and dsRNA-stimulated bronchial epithelial cells from COPD donors. Hence, TSLP may be causally involved in exacerbations. This study tests our hypothesis that simvastatin may inhibit dsRNA-induced TSLP. Experimental approach: Epithelial cells, obtained by bronchoscopy from COPD (n=7) and smoker control (n=8) donors, were grown and stimulated with viral infection and danger signal surrogate, dsRNA (10 µg·mL(-1) ). Cells were treated with simvastatin (0.2-5 µg·mL(-1) ), with or without mevalonate (13-26 µg·mL(-1) ), or dexamethasone (1 µg·mL(-1) ) prior to dsRNA. Cytokine expression and production, and transcription factor (IRF3 and NF-κB) activation were determined. Key results: dsRNA induced TSLP, TNFα, CXCL8, and IFNβ. TSLP was overproduced in dsRNA-exposed COPD cells compared to control. Simvastatin, concentration-dependently, but not dexamethasone, inhibited dsRNA-induced TSLP. Unexpectedly, simvastatin acted independent of mevalonate and did not affect dsRNA-induced NF-κB activation nor did it reduce production of TNFα and CXCL8. Instead, simvastatin inhibited dsRNA-induced IRF3 phosphorylation and generation of IFNβ. Conclusions and implications: Independent of mevalonate and NF-κB, previously acknowledged anti-inflammatory mechanisms of pleiotropic statins, simvastatin selectively inhibited dsRNA-induced IRF3 activation and production of TSLP and IFNβ in COPD epithelium. These data provide novel insight into epithelial generation of TSLP and suggest paths to be exploited in drug discovery aimed at inhibiting TSLP-induced pulmonary immunopathology.
  •  
5.
  • Calvén, Jenny (författare)
  • Emerging role of RIG-I-like receptors in antiviral innate immunity in airway structural cells
  • 2015
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Respiratory viral infections, especially involving rhinovirus, are main triggers of exacerbations of asthma and COPD. These severe conditions are a great burden to both the individual and society and currently lack effective treatments. Hence, a clear need exists for research into the cellular and molecular mechanisms by which viral infections evoke exacerbations of airway disease in order to better design effective therapeutics in the future. The aim of this thesis work has been to explore the immune response of airway structural cells to rhinoviral infection. To this end, we have employed in vitro cultures of primary human bronchial epithelial cells (BECs) and bronchial smooth muscle cells (BSMCs) from healthy subjects and patients with COPD and asthma. In general, these cells were infected with rhinovirus (RV) or stimulated with agonists for TLR3 and RIG-I-like receptors, and expression and/or release of specific genes and proteins were analysed by RT-qPCR, Western Blot and ELISA. In summary, our results show that BECs from severe COPD patients overproduce an upstream Th2-driving cytokine, TSLP, in response to RV infection and the RV replication intermediate dsRNA in a TLR3-dependent manner. Exaggerated production of the proinflammatory mediators TNF-α and CXCL8 was also observed in viral-challenged COPD-BECs and involved activation of both endosomal TLR3 and cytosolic RIG-I-like receptors. We further provide novel data that BSMCs from healthy individuals express the RIG-I-like receptors, RIG-I and MDA5. RV infection and activation of these innate immune sensors as well as TLR3 also lead to production of the antiviral cytokines IFN-β and IFN-λ1, suggesting a role for BSMCs in antiviral host defence. Finally, we have explored expression and regulation of another Th2-promoting cytokine, IL-33, in BSMCs from both healthy and asthmatic subjects. Our results demonstrate that IL-33 is upregulated by soluble mediators released from cultured BECs, and that dsRNA stimulation enhances this response, especially in asthmatic BSMCs. We further show that BSMCs also produce IL-33 in response to RV infection and activation of TLR3 and RIG-I-like receptors, and that ATP, via purinergic receptor signalling, is potentially involved as a mediator of IL-33 induction in BSMCs upon challenge with both epithelial-derived mediators and viral stimuli. In conclusion, our findings have provided new insights into regulatory functions of viral-challenged airway epithelial and smooth muscle cells in relation to airway inflammation and antiviral innate immunity. Intrinsic differences in health and disease have been identified, encouraging future studies of involved mechanisms that may serve as targets for novel therapeutic interventions in viral-induced exacerbations of asthma and COPD.
  •  
6.
  • Calvén, Jenny, et al. (författare)
  • Rhinoviral stimuli, epithelial factors and ATP signalling contribute to bronchial smooth muscle production of IL-33
  • 2015
  • Ingår i: Journal of Translational Medicine. - : Springer Science and Business Media LLC. - 1479-5876. ; 13
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Bronchial smooth muscle cells (BSMCs) from severe asthmatics have been shown to overexpress the Th2-driving and asthma-associated cytokine IL-33. However, little is known regarding factors involved in BSMC production of IL-33. Rhinovirus (RV) infections cause asthma exacerbations, which exhibit features of Th2-type inflammation. Here, we investigated the effects of epithelial-derived media and viral stimuli on IL-33 expression in human BSMCs. Methods: Primary human BSMCs from healthy (n = 3) and asthmatic (n = 3) subjects were stimulated with conditioned media from primary human bronchial epithelial cells (BECs), double-stranded (ds) RNA, dsRNA/LyoVec, or infected with RV. BSMCs were also pretreated with the purinergic receptor antagonist suramin. IL-33 expression was analysed by RT-qPCR and western blot and ATP levels were determined in cell supernatants. Results: RV infection and activation of TLR3 by dsRNA increased IL-33 mRNA and protein in healthy and asthmatic BSMCs. These effects were inhibited by dexamethasone. BSMC expression of IL-33 was also increased by stimulation of RIG-I-like receptors using dsRNA/LyoVec. Conditioned media from BECs induced BSMC expression of IL-33, which was further enhanced by dsRNA. BEC-derived medium and viral-stimulated BSMC supernatants exhibited elevated ATP levels. Blocking of purinergic signalling with suramin inhibited BSMC expression of IL-33 induced by dsRNA and BEC-derived medium. Conclusions: RV infection of BSMCs and activation of TLR3 and RIG-I-like receptors cause expression and production of IL-33. Epithelial-released factor(s) increase BSMC expression of IL-33 and exhibit positive interaction with dsRNA. Increased BSMC IL-33 associates with ATP release and is antagonised by suramin. We suggest that epithelial-derived factors contribute to baseline BSMC IL-33 production, which is further augmented by RV infection of BSMCs and stimulation of their pathogen-recognising receptors.
  •  
7.
  • Calvén, Jenny, et al. (författare)
  • Rhinovirus and dsRNA Induce RIG-I-Like Receptors and Expression of Interferon β and λ1 in Human Bronchial Smooth Muscle Cells.
  • 2013
  • Ingår i: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 8:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Rhinovirus (RV) infections cause exacerbations and development of severe asthma highlighting the importance of antiviral interferon (IFN) defence by airway cells. Little is known about bronchial smooth muscle cell (BSMC) production of IFNs and whether BSMCs have dsRNA-sensing receptors besides TLR3. dsRNA is a rhinoviral replication intermediate and necrotic cell effect mimic that mediates innate immune responses in bronchial epithelial cells. We have explored dsRNA-evoked IFN-β and IFN-λ1 production in human BSMCs and potential involvement of TLR3 and RIG-I-like receptors (RLRs). Primary BSMCs were stimulated with 0.1-10 µg/ml dsRNA, 0.1-1 µg/ml dsRNA in complex with the transfection agent LyoVec (dsRNA/LyoVec; selectively activating cytosolic RLRs) or infected with 0.05-0.5 MOI RV1B. Both dsRNA stimuli evoked early (3 h), concentration-dependent IFN-β and IFN-λ1 mRNA expression, which with dsRNA/LyoVec was much greater, and with dsRNA was much less, after 24 h. The effects were inhibited by dexamethasone. Further, dsRNA and dsRNA/LyoVec concentration-dependently upregulated RIG-I and MDA5 mRNA and protein. dsRNA and particularly dsRNA/LyoVec caused IFN-β and IFN-λ1 protein production (24 h). dsRNA- but not dsRNA/LyoVec-induced IFN expression was partly inhibited by chloroquine that suppresses endosomal TLR3 activation. RV1B dose-dependently increased BSMC expression of RIG-I, MDA5, IFN-β, and IFN-λ1 mRNA. We suggest that BSMCs express functional RLRs and that both RLRs and TLR3 are involved in viral stimulus-induced BSMC expression of IFN-β and IFN-λ1.
  •  
8.
  • Calvén, Jenny, et al. (författare)
  • The airway epithelium—a central player in asthma pathogenesis
  • 2020
  • Ingår i: International Journal of Molecular Sciences. - : MDPI AG. - 1661-6596 .- 1422-0067. ; 21:23, s. 1-29
  • Tidskriftsartikel (refereegranskat)abstract
    • Asthma is a chronic inflammatory airway disease characterized by variable airflow obstruction in response to a wide range of exogenous stimuli. The airway epithelium is the first line of defense and plays an important role in initiating host defense and controlling immune responses. Indeed, increasing evidence indicates a range of abnormalities in various aspects of epithelial barrier function in asthma. A central part of this impairment is a disruption of the airway epithelial layer, allowing inhaled substances to pass more easily into the submucosa where they may interact with immune cells. Furthermore, many of the identified susceptibility genes for asthma are expressed in the airway epithelium. This review focuses on the biology of the airway epithelium in health and its pathobiology in asthma. We will specifically discuss external triggers such as allergens, viruses and alarmins and the effect of type 2 inflammatory responses on airway epithelial function in asthma. We will also discuss epigenetic mechanisms responding to external stimuli on the level of transcriptional and posttranscriptional regulation of gene expression, as well the airway epithelium as a potential treatment target in asthma. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.
  •  
9.
  • Calvén, Jenny, et al. (författare)
  • Viral Stimuli Trigger Exaggerated Thymic Stromal Lymphopoietin Expression by Chronic Obstructive Pulmonary Disease Epithelium: Role of Endosomal TLR3 and Cytosolic RIG-I-Like Helicases.
  • 2012
  • Ingår i: Journal of Innate Immunity. - : S. Karger AG. - 1662-811X .- 1662-8128. ; 4, s. 86-99
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Rhinovirus (RV)-induced chronic obstructive pulmonary disease (COPD) exacerbations exhibit TH(2)-like inflammation. We hypothesized that RV-infected bronchial epithelial cells (BEC) overproduce TH(2)-switching hub cytokine, thymic stromal lymphopoietin (TSLP) in COPD. Methods: Primary BEC from healthy (HBEC) and from COPD donors (COPD-BEC) were grown in 12-well plates, infected with RV16 (0.5-5 MOI) or stimulated with agonists for either toll-like receptor (TLR) 3 (dsRNA, 0.1-10 μg/ml) or RIG-I-like helicases (dsRNA-LyoVec, 0.1-10 μg/ml). Cytokine mRNA and protein were determined (RTqPCR; ELISA). Results: dsRNA dose-dependently evoked cytokine gene overproduction of TSLP, CXCL8 and TNF-α in COPD-BEC compared to HBEC. This was confirmed using RV16 infection. IFN-β induction did not differ between COPD-BEC and HBEC. Endosomal TLR3 inhibition by chloroquine dose-dependently inhibited dsRNA-induced TSLP generation and reduced generation of CXCL8, TNF-α, and IFN-β. Stimulation of cytosolic viral sensors (RIG-I-like helicases) with dsRNA-LyoVec increased production of CXCL8, TNF-α, and IFN-β, but not TSLP. Conclusions: Endosomal TLR3-stimulation, by dsRNA or RV16, induces overproduction of TSLP in COPD-BEC. dsRNA- and RV-induced overproduction of TNF-α and CXCL8 involves endosomal TLR3 and cytosolic RIG-I-like helicases and so does the generation of IFN-β in COPD-BEC. RV16 and dsRNA-induced epithelial TSLP may contribute to pathogenic effects at exacerbations and development of COPD.
  •  
10.
  • Mahmutovic Persson, Irma, et al. (författare)
  • Capacity of capsazepinoids to relax human small airways and inhibit TLR3-induced TSLP and IFNβ production in diseased bronchial epithelial cells.
  • 2012
  • Ingår i: International Immunopharmacology. - : Elsevier BV. - 1878-1705 .- 1567-5769. ; 13:3, s. 292-300
  • Tidskriftsartikel (refereegranskat)abstract
    • Thymic stromal lymphopoietin (TSLP), an immunomodulating potentially disease-inducing cytokine, is overproduced in TLR3-stimulated bronchial epithelial cells from asthmatic donors whereas production of antiviral IFNβ is deficient. It is of therapeutic interest that capsazepine inhibits epithelial TSLP and relaxes human small airways with similar potencies. However, it is not known if other capsazepine-like compounds share such dual actions. This study explores epithelial anti-TSLP and anti-IFNβ effects of capsazepine and novel capsazepine-like bronchorelaxants. We used primary bronchial epithelial cells from asthmatic and chronic obstructive pulmonary disease (COPD) donors, and human small airways dissected from surgically removed lungs. Seven novel capsazepinoids were about 10 times, and one compound (RES187) >30 times, more potent than capsazepine as relaxants of LTD(4)-contracted small airways. TLR3-induced TSLP, TNFα, CXCL8, and IFNβ mRNA and protein levels were dose-dependently and non-selectively inhibited by capsazepine, equally in cells from asthmatic and COPD donors. The novel compounds, except RES187, reduced TSLP and IFNβ but none are more potent than capsazepine. Only capsazepine consistently inhibited TNFα and CXCL8 production and attenuated TLR3-induced epithelial NF-κB signalling. Hence, the present compounds did not separate between inhibition of TLR3-induced epithelial TSLP and IFNβ, but all compounds, except capsazepine, did separate between the bronchorelaxant and the epithelial immune effects. We conclude that similar mechanisms may be involved in capsazepine-like inhibition of TLR3-induced epithelial TSLP and IFNβ and that these are distinct from mechanisms involved in relaxation of small airways by these compounds.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy