SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Campagne J) "

Sökning: WFRF:(Campagne J)

  • Resultat 1-10 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Abdellaoui, G., et al. (författare)
  • Meteor studies in the framework of the JEM-EUSO program
  • 2017
  • Ingår i: Planetary and Space Science. - : Elsevier. - 0032-0633 .- 1873-5088. ; 143, s. 245-255
  • Tidskriftsartikel (refereegranskat)abstract
    • We summarize the state of the art of a program of UV observations from space of meteor phenomena, a secondary objective of the JEM-EUSO international collaboration. Our preliminary analysis indicates that JEM-EUSO, taking advantage of its large FOV and good sensitivity, should be able to detect meteors down to absolute magnitude close to 7. This means that JEM-EUSO should be able to record a statistically significant flux of meteors, including both sporadic ones, and events produced by different meteor streams. Being unaffected by adverse weather conditions, JEM-EUSO can also be a very important facility for the detection of bright meteors and fireballs, as these events can be detected even in conditions of very high sky background. In the case of bright events, moreover, exhibiting some persistence of the meteor train, preliminary simulations show that it should be possible to exploit the motion of the ISS itself and derive at least a rough 3D reconstruction of the meteor trajectory. Moreover, the observing strategy developed to detect meteors may also be applied to the detection of nuclearites, exotic particles whose existence has been suggested by some theoretical investigations. Nuclearites are expected to move at higher velocities than meteoroids, and to exhibit a wider range of possible trajectories, including particles moving upward after crossing the Earth. Some pilot studies, including the approved Mini-EUSO mission, a precursor of JEM-EUSO, are currently operational or in preparation. We are doing simulations to assess the performance of Mini-EUSO for meteor studies, while a few meteor events have been already detected using the ground-based facility EUSO-TA.
  •  
3.
  • Abdellaoui, G., et al. (författare)
  • First observations of speed of light tracks by a fluorescence detector looking down on the atmosphere
  • 2018
  • Ingår i: Journal of Instrumentation. - : IOP PUBLISHING LTD. - 1748-0221. ; 13
  • Tidskriftsartikel (refereegranskat)abstract
    • EUSO-Balloon is a pathfinder mission for the Extreme Universe Space Observatory onboard the Japanese Experiment Module (JEM-EUSO). It was launched on the moonless night of the 25(th) of August 2014 from Timmins, Canada. The flight ended successfully after maintaining the target altitude of 38 km for five hours. One part of the mission was a 2.5 hour underflight using a helicopter equipped with three UV light sources (LED, xenon flasher and laser) to perform an inflight calibration and examine the detectors capability to measure tracks moving at the speed of light. We describe the helicopter laser system and details of the underflight as well as how the laser tracks were recorded and found in the data. These are the first recorded laser tracks measured from a fluorescence detector looking down on the atmosphere. Finally, we present a first reconstruction of the direction of the laser tracks relative to the detector.
  •  
4.
  • Sen, P, et al. (författare)
  • Vaccine hesitancy decreases in rheumatic diseases, long-term concerns remain in myositis: a comparative analysis of the COVAD surveys
  • 2023
  • Ingår i: Rheumatology (Oxford, England). - : Oxford University Press (OUP). - 1462-0332 .- 1462-0324. ; 62:10, s. 3291-3301
  • Tidskriftsartikel (refereegranskat)abstract
    • ObjectiveCOVID-19 vaccines have a favorable safety profile in patients with autoimmune rheumatic diseases (AIRDs) such as idiopathic inflammatory myopathies (IIMs); however, hesitancy continues to persist among these patients. Therefore, we studied the prevalence, predictors and reasons for hesitancy in patients with IIMs, other AIRDs, non-rheumatic autoimmune diseases (nrAIDs) and healthy controls (HCs), using data from the two international COVID-19 Vaccination in Autoimmune Diseases (COVAD) e-surveys.MethodsThe first and second COVAD patient self-reported e-surveys were circulated from March to December 2021, and February to June 2022 (ongoing). We collected data on demographics, comorbidities, COVID-19 infection and vaccination history, reasons for hesitancy, and patient reported outcomes. Predictors of hesitancy were analysed using regression models in different groups.ResultsWe analysed data from 18 882 (COVAD-1) and 7666 (COVAD-2) respondents. Reassuringly, hesitancy decreased from 2021 (16.5%) to 2022 (5.1%) (OR: 0.26; 95% CI: 0.24, 0.30, P < 0.001). However, concerns/fear over long-term safety had increased (OR: 3.6; 95% CI: 2.9, 4.6, P < 0.01). We noted with concern greater skepticism over vaccine science among patients with IIMs than AIRDs (OR: 1.8; 95% CI: 1.08, 3.2, P = 0.023) and HCs (OR: 4; 95% CI: 1.9, 8.1, P < 0.001), as well as more long-term safety concerns/fear (IIMs vs AIRDs – OR: 1.9; 95% CI: 1.2, 2.9, P = 0.001; IIMs vs HCs – OR: 5.4 95% CI: 3, 9.6, P < 0.001). Caucasians [OR 4.2 (1.7–10.3)] were likely to be more hesitant, while those with better PROMIS physical health score were less hesitant [OR 0.9 (0.8–0.97)].ConclusionVaccine hesitancy has decreased from 2021 to 2022, long-term safety concerns remain among patients with IIMs, particularly in Caucasians and those with poor physical function.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  • Uwimana, A., et al. (författare)
  • Emergence and clonal expansion of in vitro artemisinin-resistantPlasmodium falciparum kelch13R561H mutant parasites in Rwanda
  • 2020
  • Ingår i: Nature Medicine. - : Springer Science and Business Media LLC. - 1078-8956 .- 1546-170X. ; 26, s. 1602-1608
  • Tidskriftsartikel (refereegranskat)abstract
    • Artemisinin resistance (delayedP. falciparumclearance following artemisinin-based combination therapy), is widespread across Southeast Asia but to date has not been reported in Africa(1-4). Here we genotyped theP. falciparum K13(Pfkelch13) propeller domain, mutations in which can mediate artemisinin resistance(5,6), in pretreatment samples collected from recent dihydroarteminisin-piperaquine and artemether-lumefantrine efficacy trials in Rwanda(7). While cure rates were >95% in both treatment arms, thePfkelch13R561H mutation was identified in 19 of 257 (7.4%) patients at Masaka. Phylogenetic analysis revealed the expansion of an indigenous R561H lineage. Gene editing confirmed that this mutation can drive artemisinin resistance in vitro. This study provides evidence for the de novo emergence ofPfkelch13-mediated artemisinin resistance in Rwanda, potentially compromising the continued success of antimalarial chemotherapy in Africa. Identification in Rwanda of mutations inPlasmodium falciparumcapable of conferring in vitro resistance to artemisinin, an essential medicine for the treatment of malaria, underscore the crucial need for surveillance in Africa to safeguard efficacy of life-saving therapies.
  •  
10.
  • Barrillon, P., et al. (författare)
  • The EUSO@TurLab project in the framework of the JEM-EUSO program
  • 2023
  • Ingår i: Experimental astronomy. - : Springer Nature. - 0922-6435 .- 1572-9508. ; 55:2, s. 569-602
  • Tidskriftsartikel (refereegranskat)abstract
    • The EUSO@TurLab project aims at performing experiments to reproduce Earth UV emissions as seen from a low Earth orbit by the planned missions of the JEM-EUSO program. It makes use of the TurLab facility, which is a laboratory, equipped with a 5 m diameter and 1 m depth rotating tank, located at the Physics Department of the University of Turin. All the experiments are designed and performed based on simulations of the expected response of the detectors to be flown in space. In April 2016 the TUS detector and more recently in October 2019 the Mini-EUSO experiment, both part of the JEM-EUSO program, have been placed in orbit to map the UV Earth emissions. It is, therefore, now possible to compare the replicas performed at TurLab with the actual images detected in space to understand the level of fidelity in terms of reproduction of the expected signals. We show that the laboratory tests reproduce at the order of magnitude level the measurements from space in terms of spatial extension and time duration of the emitted UV light, as well as the intensity in terms of expected counts per pixel per unit time when atmospheric transient events, diffuse nightlow background light, and artificial light sources are considered. Therefore, TurLab is found to be a very useful facility for testing the acquisition logic of the detectors of the present and future missions of the JEM-EUSO program and beyond in order to reproduce atmospheric signals in the laboratory. 
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy