SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Campi D.) "

Sökning: WFRF:(Campi D.)

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Santoro, V., et al. (författare)
  • HighNESS conceptual design report: Volume I
  • 2024
  • Ingår i: Journal of Neutron Research. - 1023-8166 .- 1477-2655. ; 25:3-4, s. 85-314
  • Tidskriftsartikel (refereegranskat)abstract
    • The European Spallation Source, currently under construction in Lund, Sweden, is a multidisciplinary international laboratory. Once completed to full specifications, it will operate the world’s most powerful pulsed neutron source. Supported by a 3 million Euro Research and Innovation Action within the EU Horizon 2020 program, a design study (HighNESS) has been completed to develop a second neutron source located below the spallation target. Compared to the first source, designed for high cold and thermal brightness, the new source has been optimized to deliver higher intensity, and a shift to longer wavelengths in the spectral regions of cold (CN, 2–20 Å), very cold (VCN, 10–120 Å), and ultracold (UCN, >500 Å) neutrons. The second source comprises a large liquid deuterium moderator designed to produce CN and support secondary VCN and UCN sources. Various options have been explored in the proposed designs, aiming for world-leading performance in neutronics. These designs will enable the development of several new instrument concepts and facilitate the implementation of a high-sensitivity neutron-antineutron oscillation experiment (NNBAR). This document serves as the Conceptual Design Report for the HighNESS project, representing its final deliverable.
  •  
3.
  • Santoro, V., et al. (författare)
  • HighNESS conceptual design report: Volume II. the NNBAR experiment.
  • 2024
  • Ingår i: Journal of Neutron Research. - 1023-8166 .- 1477-2655. ; 25:3-4, s. 315-406
  • Tidskriftsartikel (refereegranskat)abstract
    • A key aim of the HighNESS project for the European Spallation Source is to enable cutting-edge particle physics experiments. This volume presents a conceptual design report for the NNBAR experiment. NNBAR would exploit a new cold lower moderator to make the first search in over thirty years for free neutrons converting to anti-neutrons. The observation of such a baryon-number-violating signature would be of fundamental significance and tackle open questions in modern physics, including the origin of the matter-antimatter asymmetry. This report shows the design of the beamline, supermirror focusing system, magnetic and radiation shielding, and anti-neutron detector necessary for the experiment. A range of simulation programs are employed to quantify the performance of the experiment and show how background can be suppressed. For a search with full background suppression, a sensitivity improvement of three orders of magnitude is expected, as compared with the previous search. Civil engineering studies for the NNBAR beamline are also shown, as is a costing model for the experiment.
  •  
4.
  •  
5.
  • Santoro, V., et al. (författare)
  • DEVELOPMENT OF A HIGH INTENSITY NEUTRON SOURCE AT THE EUROPEAN SPALLATION SOURCE : THE HIGHNESS PROJECT
  • 2022
  • Ingår i: Proceedings of the 14th International Topical Meeting on Nuclear Applications of Accelerators, AccApp 2021, Embedded with the 2021 ANS Winter Meeting. - 9780894487842 ; , s. 11-20
  • Konferensbidrag (refereegranskat)abstract
    • The European Spallation Source (ESS), presently under construction in Lund, Sweden, is a multidisciplinary international laboratory that will operate the world’s most powerful pulsed neutron source. Supported by a 3M Euro Research and Innovation Action within the EU Horizon 2020 program, a design study (HighNESS) is now underway to develop a second neutron source below the spallation target. Compared to the first source, located above the spallation target and designed for high cold and thermal brightness, the new source will provide higher intensity, and a shift to longer wavelengths in the spectral regions of cold (2-20 Å), very cold (VCN, 10-120 Å), and ultra cold (UCN, > 500 Å) neutrons. The core of the second source will consist of a large liquid deuterium moderator to deliver a high flux of cold neutrons and to serve secondary VCN and UCN sources, for which different options are under study. The features of these new sources will boost several areas of condensed matter research and will provide unique opportunities in fundamental physics. Part of the HighNESS project is also dedicated to the development of future instruments that will make use of the new source and will complement the initial suite of instruments in construction at ESS. The HighNESS project started in October 2020. In this paper, the ongoing developments and the results obtained in the first year are described.
  •  
6.
  • Santoro, V., et al. (författare)
  • The HighNESS Project at the European Spallation Source : Current Status and Future Perspectives
  • 2024
  • Ingår i: Nuclear science and engineering. - 0029-5639 .- 1943-748X. ; 198:1, s. 31-63
  • Tidskriftsartikel (refereegranskat)abstract
    • The European Spallation Source (ESS), presently under construction in Lund, Sweden, is a multidisciplinary international laboratory that, once completed at full specifications, will operate the world's most powerful pulsed neutron source. Supported by a 3 M Euro Research and Innovation Action within the European Union Horizon 2020 program, a design study (HighNESS) is now underway to develop a second neutron source located below the spallation target. Compared to the first source, which is located above the spallation target and designed for high cold and thermal brightness, the new source is being optimized to deliver higher intensity and a shift to longer wavelengths in the spectral regions of cold neutrons (CNs) (2 to 20 & Aring;), very cold neutrons (VCNs) (10 to 120 & Aring;), and ultracold neutrons (UCNs) (> 500 & Aring;). The second source consists of a large liquid deuterium moderator to deliver CNs and serve secondary VCN and UCN sources, for which different options are under study. These new sources will boost several areas of condensed matter research and will provide unique opportunities in fundamental physics. The HighNESS project is now entering its last year, and we are working toward the Conceptual Design Report of the ESS upgrade. In this paper, results obtained in the first 2 years, ongoing developments, and future perspectives are described.
  •  
7.
  •  
8.
  • Heyl, C. M., et al. (författare)
  • Noncollinear optical gating - A method for intra-cavity single attosecond pulse generation?
  • 2019
  • Ingår i: Proceedings 2015 European Conference on Lasers and Electro-Optics - European Quantum Electronics Conference, CLEO/Europe-EQEC 2015. - 9781467374750
  • Konferensbidrag (refereegranskat)abstract
    • The process of high-order harmonic generation requires laser intensities around 1014 W/cm2, most easily reached with laser pulses of high energy, thus implicitly limiting the repetition rate of attosecond sources. A route towards multi-MHz attosecond sources relies on HHG inside a passive enhancement cavity [1]. Although successfully demonstrated for attosecond pulse trains, the generation of single attosecond pulses (SAPs) inside a cavity remains an unsolved challenge, mainly limited by dispersion management and out-coupling problems. We recently proposed a new gating concept for SAP generation [2], noncollinear optical gating (NOG) which has the potential to facilitate SAP gating and efficient out-coupling at once. Similar to the recently introduced attosecond lighthouse [3] NOG employs attosecond angular streaking [4] and combines this concept with noncollinear HHG, proposed earlier [5] as out-coupling method for intra cavity HHG.
  •  
9.
  • Campi, Riccardo, et al. (författare)
  • Novel Liquid Biomarkers and Innovative Imaging for Kidney Cancer Diagnosis : What Can Be Implemented in Our Practice Today? A Systematic Review of the Literature
  • 2021
  • Ingår i: European Urology Oncology. - : Elsevier. - 2588-9311. ; 4:1, s. 22-41
  • Forskningsöversikt (refereegranskat)abstract
    • CONTEXT: The epidemiological signature of renal cell carcinoma (RCC) during the past decades is explained by overdetection and overtreatment of indolent cancers; furthermore, a non-negligible proportion of patients undergoing surgery for suspected RCC harbour benign renal tumours. As the gold standard for RCC diagnosis remains histopathological analysis of surgical or biopsy specimens, implementation of noninvasive diagnostic strategies to discriminate between benign and malignant renal masses is an urgent unmet need. OBJECTIVE: To systematically review novel liquid biomarkers and imaging modalities for RCC diagnosis. EVIDENCE ACQUISITION: A systematic review of the recent English-language literature was conducted according to the European Association of Urology guidelines and the PRISMA statement recommendations (PROSPERO ID: CRD42020190773) using the MEDLINE, Cochrane Central Register of Controlled Trials, Web of Science, and ClinicalTrials.gov databases. Risk-of-bias assessment was performed according to the QUADAS 2 tool. EVIDENCE SYNTHESIS: Overall, 15 studies (six on biomarkers and nine on imaging) and eight clinical trials were included. None of the biomarkers or imaging modalities has been validated or shown to have a distinct clinical value for RCC. Specific combinations of urinary cell-free and exosomal miRNAs, urinary miR-15a, and specific panels of urinary metabolites assessed by metabolomics appear promising. In addition, machine/deep learning algorithms and radiomics applied to cross-sectional images may have potential to improve RCC diagnosis. Most studies are limited by the retrospective design, size, and lack of external validation. CONCLUSIONS: Liquid biomarkers or imaging modalities are not ready for integration in the clinic and further well-designed studies must validate preliminary findings and explore utility in clinical decision-making. PATIENT SUMMARY: We provide a comprehensive overview of the currently available biomarkers (measured in blood or urine) and novel imaging tests (other than conventional imaging) to discriminate kidney cancer from benign renal masses in a noninvasive fashion. None of the biomarkers or imaging modalities studied was validated or added clinical value; therefore, none of them can be implemented in the clinic. However, these approaches appear to be promising for improving the diagnosis of kidney cancer in the future.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy