SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Canali C.) "

Sökning: WFRF:(Canali C.)

  • Resultat 1-10 av 14
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Aghion, S., et al. (författare)
  • A moiré deflectometer for antimatter
  • 2014
  • Ingår i: Nature Communications. - : Nature Publishing Group. - 2041-1723. ; 5
  • Tidskriftsartikel (refereegranskat)abstract
    • The precise measurement of forces is one way to obtain deep insight into the fundamental interactions present in nature. In the context of neutral antimatter, the gravitational interaction is of high interest, potentially revealing new forces that violate the weak equivalence principle. Here we report on a successful extension of a tool from atom optics—the moiré deflectometer—for a measurement of the acceleration of slow antiprotons. The setup consists of two identical transmission gratings and a spatially resolving emulsion detector for antiproton annihilations. Absolute referencing of the observed antimatter pattern with a photon pattern experiencing no deflection allows the direct inference of forces present. The concept is also straightforwardly applicable to antihydrogen measurements as pursued by the AEgIS collaboration. The combination of these very different techniques from high energy and atomic physics opens a very promising route to the direct detection of the gravitational acceleration of neutral antimatter.
  •  
3.
  • Ariga, T., et al. (författare)
  • Measuring GBAR with emulsion detector
  • 2014
  • Ingår i: International Journal of Modern Physics, Conference Series. - : World Scientific. - 2010-1945. ; 30
  • Tidskriftsartikel (refereegranskat)
  •  
4.
  • Borschel, Christian, et al. (författare)
  • A New Route toward Semiconductor Nanospintronics : Highly Mn-Doped GaAs Nanowires Realized by Ion-Implantation under Dynamic Annealing Conditions
  • 2011
  • Ingår i: Nano letters (Print). - Washington : American Chemical Society (ACS). - 1530-6984 .- 1530-6992. ; 11:9, s. 3935-3940
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on highly Mn-doped GaAs nanowires (NWs) of high crystalline quality fabricated by ion beam implantation, a technique that allows doping concentrations beyond the equilibrium solubility limit. We studied two approaches for the preparation of Mn-doped GaAs NWs: First, ion implantation at room temperature with subsequent annealing resulted in polycrystalline NWs and phase segregation of MnAs and GaAs. The second approach was ion implantation at elevated temperatures. In this case, the single-crystallinity of the GaAs NWs was maintained, and crystalline, highly Mn-doped GaAs NWs were obtained. The electrical resistance of such NWs dropped with increasing temperature (activation energy about 70 meV). Corresponding magnetoresistance measurements showed a decrease at low temperatures, indicating paramagnetism. Our findings suggest possibilities for future applications where dense arrays of GaMnAs nanowires may be used as a new kind of magnetic material system.
  •  
5.
  •  
6.
  • Sims, Mark R., et al. (författare)
  • Development status of life marker chip for ExoMars
  • 2012
  • Ingår i: Planetary and Space Science. - : Elsevier BV. - 0032-0633 .- 1873-5088. ; 72:1, s. 129-137
  • Tidskriftsartikel (refereegranskat)abstract
    • The Life Marker Chip (LMC) is one of the instruments being developed for possible flight on the 2018 ExoMars mission. The instrument uses solvents to extract organic compounds from samples of martian regolith and to transfer the extracts to dedicated detectors based around the use of antibodies. The scientific aims of the instrument are to detect organics in the form of biomarkers that might be associated with extinct life, extant life or abiotic sources of organics. The instrument relies on a novel surfactant-based solvent system and bespoke, commercial and research-developed antibodies against a number of distinct biomarkers or molecular types. The LMC comprises of a number of subsystems designed to accept up to four discrete samples of martian regolith or crushed rock, implement the solvent extraction, perform microfluidic-based multiplexed antibody-assays for biomarkers and other targets, optically detect the fluorescent output of the assays, control the internal instrument pressure and temperature, in addition to the associated instrument control electronics and software. The principle of operation, the design and the instrument development status as of December 2011 are reported here. The instrument principle can be extended to other configurations and missions as needed.
  •  
7.
  • Bozkurt, M., et al. (författare)
  • Magnetic anisotropy of single Mn acceptors in GaAs in an external magnetic field
  • 2013
  • Ingår i: Physical Review B. Condensed Matter and Materials Physics. - : American Physical society. - 1098-0121 .- 1550-235X. ; 88, s. Article ID: 205203-
  • Tidskriftsartikel (refereegranskat)abstract
    • We investigate the effect of an external magnetic field on the physical properties of the acceptor hole statesassociated with single Mn acceptors placed near the (110) surface of GaAs. Cross-sectional scanning tunnelingmicroscopy images of the acceptor local density of states (LDOS) show that the strongly anisotropic hole wavefunction is not significantly affected by a magnetic field up to 6 T. These experimental results are supported bytheoretical calculations based on a tight-binding model of Mn acceptors in GaAs. For Mn acceptors on the (110)surface and the subsurfaces immediately underneath, we find that an applied magnetic field modifies significantlythe magnetic anisotropy landscape. However, the acceptor hole wave function is strongly localized around theMn and the LDOS is quite independent of the direction of the Mn magnetic moment. On the other hand, for Mnacceptors placed on deeper layers below the surface, the acceptor hole wave function is more delocalized andthe corresponding LDOS is much more sensitive on the direction of the Mn magnetic moment. However, themagnetic anisotropy energy for these magnetic impurities is large (up to 15 meV), and a magnetic field of 10 Tcan hardly change the landscape and rotate the direction of the Mn magnetic moment away from its easy axis.We predict that substantially larger magnetic fields are required to observe a significant field dependence of thetunneling current for impurities located several layers below the GaAs surface.
  •  
8.
  • Islam, Fhokrul, et al. (författare)
  • Systematics of electronic and magnetic properties in the transition metal doped Sb2Te3 quantum anomalous Hall platform
  • 2018
  • Ingår i: Physical Review B. - : American Physical Society. - 2469-9950 .- 2469-9969. ; 97:15
  • Tidskriftsartikel (refereegranskat)abstract
    • The quantum anomalous Hall effect (QAHE) has recently been reported to emerge in magnetically doped topological insulators. Although its general phenomenology is well established, the microscopic origin is far from being properly understood and controlled. Here, we report on a detailed and systematic investigation of transition metal (TM) doped Sb2Te3. By combining density functional theory calculations with complementary experimental techniques, i.e., scanning tunneling microscopy, resonant photoemission, and x-raymagnetic circular dichroism, we provide a complete spectroscopic characterization of both electronic and magnetic properties. Our results reveal that the TM dopants not only affect the magnetic state of the host material, but also significantly alter the electronic structure by generating impurity-derived energy bands. Our findings demonstrate the existence of a delicate interplay between electronic and magnetic properties in TM doped topological insulators. In particular, we find that the fate of the topological surface states critically depends on the specific character of the TM impurity: while V-and Fe-doped Sb2Te3 display resonant impurity states in the vicinity of the Dirac point, Cr and Mn impurities leave the energy gap unaffected. The single-ion magnetic anisotropy energy and easy axis, which control the magnetic gap opening and its stability, are also found to be strongly TM impurity dependent and can vary from in plane to out of plane depending on the impurity and its distance from the surface. Overall, our results provide general guidelines for the realization of a robust QAHE in TM doped Sb2Te3 in the ferromagnetic state.
  •  
9.
  • Lin, Ci, et al. (författare)
  • Improving photocatalytic hydrogen generation of g-C3N4 via efficient charge separation imposed by Bi2O2Se nanosheets
  • 2024
  • Ingår i: Carbon. - : Elsevier. - 0008-6223 .- 1873-3891. ; 218
  • Tidskriftsartikel (refereegranskat)abstract
    • Enabling highly efficient photocatalytic hydrogen production from solar-driven water splitting is of immense potential and environmental significance. However, the crucial issue of the low utilization efficiency of photogenerated charges in most photocatalysts, such as polymeric graphitic carbon nitride, g-C3N4 (CN), hampers the overall photocatalytic activity and hinders practical applications. To surmount this parasitic phenomenon, we develop a heterojunction-based strategy that improves the charge separation efficiency in CN. The heterostructure is constructed between thermally exfoliated CN and liquid phase exfoliated Bi2O2Se (BOS) via a solution-phase, electrostatically driven self-assembly process. The properly aligned band positions between the two components create a built-in electric field, which endows the composite with an enhanced charge separation efficiency. The optimized Pt-deposited heterostructure photocatalyst exhibits a hydrogen production rate of 6481 μmol h−1 g−1, and an apparent quantum efficiency of 11.65% at 420 nm, compared to those of Pt-deposited ECN (4595 μmol h−1 g−1, 6.64 %). We validate the efficient charge separation effect and the prolonged lifetime of photogenerated carriers in the heterostructure using a series of comprehensive characterizations across multiple timescales, thus, elucidating the origin of the observed photocatalytic activity. This demonstration offers valuable insights into improving the utilization efficiency of photogenerated charges for photocatalysis by heterostructure engineering with materials of distinct electronic configurations.
  •  
10.
  • Liu, Ruisheng, 1972-, et al. (författare)
  • Ferromagnetic single-electron transistors fabricated by atomic force microscopy
  • 2006
  • Konferensbidrag (refereegranskat)abstract
    • We report on the fabrication and magneto-transport measurements of Ni/Au/Ni ferromagnetic single-electron transistors (F-SETs), fabricated by atomic force microscopy. By positioning a single Au disc (30 nm in diameter) into the gap between the Ni drain and source electrodes (of width 220 nm and 80 nm, respectively) step-by-step with Angstrom precision, and using plasma-processed NiOx as tunneling barriers, we can successfully fabricate F-SETs of high quality and substantial stability. The characteristic time interval of the device between two successive tunneling events is 10ps. The absence of any clear features in the transport related to the applied external magnetic field indicates that no spin-accumulation is maintained in the central Au disc. This interesting result indicates that the spin-relaxation time inside the central island should be shorter than 10ps. Based on these findings, we will discuss possible mechanisms of spin-relaxation in metal nano-structures triggered by spin-orbit interaction.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 14

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy