SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Canali C. M.) "

Sökning: WFRF:(Canali C. M.)

  • Resultat 1-10 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Aghion, S., et al. (författare)
  • A moiré deflectometer for antimatter
  • 2014
  • Ingår i: Nature Communications. - : Nature Publishing Group. - 2041-1723. ; 5
  • Tidskriftsartikel (refereegranskat)abstract
    • The precise measurement of forces is one way to obtain deep insight into the fundamental interactions present in nature. In the context of neutral antimatter, the gravitational interaction is of high interest, potentially revealing new forces that violate the weak equivalence principle. Here we report on a successful extension of a tool from atom optics—the moiré deflectometer—for a measurement of the acceleration of slow antiprotons. The setup consists of two identical transmission gratings and a spatially resolving emulsion detector for antiproton annihilations. Absolute referencing of the observed antimatter pattern with a photon pattern experiencing no deflection allows the direct inference of forces present. The concept is also straightforwardly applicable to antihydrogen measurements as pursued by the AEgIS collaboration. The combination of these very different techniques from high energy and atomic physics opens a very promising route to the direct detection of the gravitational acceleration of neutral antimatter.
  •  
3.
  • Ariga, T., et al. (författare)
  • Measuring GBAR with emulsion detector
  • 2014
  • Ingår i: International Journal of Modern Physics, Conference Series. - : World Scientific. - 2010-1945. ; 30
  • Tidskriftsartikel (refereegranskat)
  •  
4.
  • Bozkurt, M., et al. (författare)
  • Magnetic anisotropy of single Mn acceptors in GaAs in an external magnetic field
  • 2013
  • Ingår i: Physical Review B. Condensed Matter and Materials Physics. - : American Physical society. - 1098-0121 .- 1550-235X. ; 88, s. Article ID: 205203-
  • Tidskriftsartikel (refereegranskat)abstract
    • We investigate the effect of an external magnetic field on the physical properties of the acceptor hole statesassociated with single Mn acceptors placed near the (110) surface of GaAs. Cross-sectional scanning tunnelingmicroscopy images of the acceptor local density of states (LDOS) show that the strongly anisotropic hole wavefunction is not significantly affected by a magnetic field up to 6 T. These experimental results are supported bytheoretical calculations based on a tight-binding model of Mn acceptors in GaAs. For Mn acceptors on the (110)surface and the subsurfaces immediately underneath, we find that an applied magnetic field modifies significantlythe magnetic anisotropy landscape. However, the acceptor hole wave function is strongly localized around theMn and the LDOS is quite independent of the direction of the Mn magnetic moment. On the other hand, for Mnacceptors placed on deeper layers below the surface, the acceptor hole wave function is more delocalized andthe corresponding LDOS is much more sensitive on the direction of the Mn magnetic moment. However, themagnetic anisotropy energy for these magnetic impurities is large (up to 15 meV), and a magnetic field of 10 Tcan hardly change the landscape and rotate the direction of the Mn magnetic moment away from its easy axis.We predict that substantially larger magnetic fields are required to observe a significant field dependence of thetunneling current for impurities located several layers below the GaAs surface.
  •  
5.
  • Borschel, Christian, et al. (författare)
  • A New Route toward Semiconductor Nanospintronics : Highly Mn-Doped GaAs Nanowires Realized by Ion-Implantation under Dynamic Annealing Conditions
  • 2011
  • Ingår i: Nano letters (Print). - Washington : American Chemical Society (ACS). - 1530-6984 .- 1530-6992. ; 11:9, s. 3935-3940
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on highly Mn-doped GaAs nanowires (NWs) of high crystalline quality fabricated by ion beam implantation, a technique that allows doping concentrations beyond the equilibrium solubility limit. We studied two approaches for the preparation of Mn-doped GaAs NWs: First, ion implantation at room temperature with subsequent annealing resulted in polycrystalline NWs and phase segregation of MnAs and GaAs. The second approach was ion implantation at elevated temperatures. In this case, the single-crystallinity of the GaAs NWs was maintained, and crystalline, highly Mn-doped GaAs NWs were obtained. The electrical resistance of such NWs dropped with increasing temperature (activation energy about 70 meV). Corresponding magnetoresistance measurements showed a decrease at low temperatures, indicating paramagnetism. Our findings suggest possibilities for future applications where dense arrays of GaMnAs nanowires may be used as a new kind of magnetic material system.
  •  
6.
  • Islam, Fhokrul, et al. (författare)
  • Systematics of electronic and magnetic properties in the transition metal doped Sb2Te3 quantum anomalous Hall platform
  • 2018
  • Ingår i: Physical Review B. - : American Physical Society. - 2469-9950 .- 2469-9969. ; 97:15
  • Tidskriftsartikel (refereegranskat)abstract
    • The quantum anomalous Hall effect (QAHE) has recently been reported to emerge in magnetically doped topological insulators. Although its general phenomenology is well established, the microscopic origin is far from being properly understood and controlled. Here, we report on a detailed and systematic investigation of transition metal (TM) doped Sb2Te3. By combining density functional theory calculations with complementary experimental techniques, i.e., scanning tunneling microscopy, resonant photoemission, and x-raymagnetic circular dichroism, we provide a complete spectroscopic characterization of both electronic and magnetic properties. Our results reveal that the TM dopants not only affect the magnetic state of the host material, but also significantly alter the electronic structure by generating impurity-derived energy bands. Our findings demonstrate the existence of a delicate interplay between electronic and magnetic properties in TM doped topological insulators. In particular, we find that the fate of the topological surface states critically depends on the specific character of the TM impurity: while V-and Fe-doped Sb2Te3 display resonant impurity states in the vicinity of the Dirac point, Cr and Mn impurities leave the energy gap unaffected. The single-ion magnetic anisotropy energy and easy axis, which control the magnetic gap opening and its stability, are also found to be strongly TM impurity dependent and can vary from in plane to out of plane depending on the impurity and its distance from the surface. Overall, our results provide general guidelines for the realization of a robust QAHE in TM doped Sb2Te3 in the ferromagnetic state.
  •  
7.
  • Lin, Ci, et al. (författare)
  • Improving photocatalytic hydrogen generation of g-C3N4 via efficient charge separation imposed by Bi2O2Se nanosheets
  • 2024
  • Ingår i: Carbon. - : Elsevier. - 0008-6223 .- 1873-3891. ; 218
  • Tidskriftsartikel (refereegranskat)abstract
    • Enabling highly efficient photocatalytic hydrogen production from solar-driven water splitting is of immense potential and environmental significance. However, the crucial issue of the low utilization efficiency of photogenerated charges in most photocatalysts, such as polymeric graphitic carbon nitride, g-C3N4 (CN), hampers the overall photocatalytic activity and hinders practical applications. To surmount this parasitic phenomenon, we develop a heterojunction-based strategy that improves the charge separation efficiency in CN. The heterostructure is constructed between thermally exfoliated CN and liquid phase exfoliated Bi2O2Se (BOS) via a solution-phase, electrostatically driven self-assembly process. The properly aligned band positions between the two components create a built-in electric field, which endows the composite with an enhanced charge separation efficiency. The optimized Pt-deposited heterostructure photocatalyst exhibits a hydrogen production rate of 6481 μmol h−1 g−1, and an apparent quantum efficiency of 11.65% at 420 nm, compared to those of Pt-deposited ECN (4595 μmol h−1 g−1, 6.64 %). We validate the efficient charge separation effect and the prolonged lifetime of photogenerated carriers in the heterostructure using a series of comprehensive characterizations across multiple timescales, thus, elucidating the origin of the observed photocatalytic activity. This demonstration offers valuable insights into improving the utilization efficiency of photogenerated charges for photocatalysis by heterostructure engineering with materials of distinct electronic configurations.
  •  
8.
  • Liu, Ruisheng, 1972-, et al. (författare)
  • Ferromagnetic single-electron transistors fabricated by atomic force microscopy
  • 2006
  • Konferensbidrag (refereegranskat)abstract
    • We report on the fabrication and magneto-transport measurements of Ni/Au/Ni ferromagnetic single-electron transistors (F-SETs), fabricated by atomic force microscopy. By positioning a single Au disc (30 nm in diameter) into the gap between the Ni drain and source electrodes (of width 220 nm and 80 nm, respectively) step-by-step with Angstrom precision, and using plasma-processed NiOx as tunneling barriers, we can successfully fabricate F-SETs of high quality and substantial stability. The characteristic time interval of the device between two successive tunneling events is 10ps. The absence of any clear features in the transport related to the applied external magnetic field indicates that no spin-accumulation is maintained in the central Au disc. This interesting result indicates that the spin-relaxation time inside the central island should be shorter than 10ps. Based on these findings, we will discuss possible mechanisms of spin-relaxation in metal nano-structures triggered by spin-orbit interaction.
  •  
9.
  • Liu, Ruisheng, et al. (författare)
  • Large magnetoresistance in Co/Ni/Co ferromagnetic single electron transistors
  • 2007
  • Ingår i: Applied Physics Letters. - New York : American Institute of Physics. - 0003-6951 .- 1077-3118. ; 90:12, s. 123111-
  • Tidskriftsartikel (refereegranskat)abstract
    • The authors report on magnetotransport investigations of nanoscaled ferromagnetic Co/Ni/Co single electron transistors. As a result of reduced size, the devices exhibit single electron transistor characteristics at 4.2 K. Magnetotransport measurements carried out at 1.8 K reveal tunneling magnetoresistance (TMR) traces with negative coercive fields, which the authors interpret in terms of a switching mechanism driven by the shape anisotropy of the central wirelike Ni island. A large TMR of about 18% is observed within a finite source-drain bias regime. The TMR decreases rapidly with increasing bias, which the authors tentatively attribute to excitation of magnons in the central island.
  •  
10.
  • Mahani, Mohammad Reza (författare)
  • Magnetic solotronics near the surface of a semiconductor and a topological insulator
  • 2015
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Technology where a solitary dopant acts as the active component of an opto-electronic device is an emerging  field known as solotronics, and bears the promise to revolutionize the way in which information is stored, processed and transmitted. Magnetic doped semiconductors and in particular (Ga, Mn)As, the archetype of dilute magnetic semiconductors, and topological insulators (TIs), a new phase of quantum matter with unconventional characteristics, are two classes of quantum materials that have the potential to advance spin-electronics technology. The quest to understand and control, at the atomic level, how a few magnetic atoms precisely positioned in a complex environment respond to external stimuli, is the red thread that connects these two quantum materials in the research presented here.The goal of the thesis is in part to elucidate the properties of transition metal (TM) impurities near the surface of GaAs semiconductors with focus on their response to local magnetic and electric fields, as well as to investigate the real-time dynamics of their localized spins. Our theoretical analysis, based on density functional theory (DFT) and using tight-binding (TB) models, addresses the mid-gap electronic structure, the local density of states (LDOS) and the magnetic anisotropy energy of individual Mn and Fe impurities near the (110) surface of GaAs. We investigate the effect of a magnetic field on the Mn acceptor LDOS measured in cross-sectional scanning tunneling microscopy, and provide an explanation of why the experimental LDOS images depend weakly on the field direction despite the strongly anisotropic nature of the Mn acceptor wavefunction. We also investigate the effects of a local electrostatic field generated by nearby charged As vacancies, on individual and pairs of ferromagnetically coupled magnetic dopants near the surface of GaAs, providing a means to control electrically the exchange interaction of Mn pairs. Finally, using the mixed quantum-classical scheme for spin dynamics, we calculate explicitly the time evolution of the Mn spin and its bound acceptor, and analyze the dynamic interaction between pairs of ferromagnetically coupled magnetic impurities in a nanoscaled semiconductor.The second part of the thesis deals with the theoretical investigation of a single substitutional Mn impurity and its associated acceptor state on the (111) surface of Bi2Se3 TI, using an approach that combines DFT and TB calculations. Our analysis clarifies the crucial role played by the spatial overlap and the quasi-resonant coupling between the Mn-acceptor and the topological surface states inside the Bi2Se3 band gap, in the opening of a gap at the Dirac point. Strong electronic correlations are also found to contribute significantly to the mechanism leading to the gap, since they control the hybridization between the p orbitals of nearest-neighbor Se atoms and the acceptor spin-polarization. Our results explain the effects of inversion-symmetry and time-reversal symmetry breaking on the electronic states in the vicinity of the Dirac point, and contribute to clarifying the origin of surface-ferromagnetism in TIs. The promising potential of magnetic-doped TIs accentuates the importance of our contribution to the understanding of the interplay between magnetic order and topological protected surface states.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy