SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Cancellario Tommaso) "

Sökning: WFRF:(Cancellario Tommaso)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Eckert, Ester M., et al. (författare)
  • A combination of host ecology and habitat but not evolutionary history explains differences in the microbiomes associated with rotifers
  • 2023
  • Ingår i: Hydrobiologia. - : Springer Science and Business Media LLC. - 0018-8158 .- 1573-5117. ; 850:17, s. 3813-3821
  • Tidskriftsartikel (refereegranskat)abstract
    • The holobiont concept places emphasis on the strict relationship between a host and its associated microbiome, with several studies supporting a strong effect of the quality of the microbiome on the host fitness. The generalities of the holobiont have been questioned for several invertebrates, including zooplankton. Here we assess the role of host ecology, habitat, and evolutionary history to explain the differences in the microbiomes associated with rotifers, across a broad taxonomic spectrum and from different habitats. The analyses of 93 rotifer-associated microbiomes from 23 rotifer host species revealed that a combination of effects from the host ecology and its habitat seem to be stronger than host phylogenetic distances in explaining differences in microbial composition of the microbiomes. This pattern is in line with the idea of habitat filtering being a stronger explanation than co-evolution in shaping the relationship between a microbiome and its rotifer host. 
  •  
2.
  • Shumilova, Oleksandra, et al. (författare)
  • Simulating rewetting events in intermittent rivers and ephemeral streams : A global analysis of leached nutrients and organic matter
  • 2019
  • Ingår i: Global Change Biology. - : WILEY. - 1354-1013 .- 1365-2486. ; 25:5, s. 1591-1611
  • Tidskriftsartikel (refereegranskat)abstract
    • Climate change and human pressures are changing the global distribution and the extent of intermittent rivers and ephemeral streams (IRES), which comprise half of the global river network area. IRES are characterized by periods of flow cessation, during which channel substrates accumulate and undergo physico-chemical changes (preconditioning), and periods of flow resumption, when these substrates are rewetted and release pulses of dissolved nutrients and organic matter (OM). However, there are no estimates of the amounts and quality of leached substances, nor is there information on the underlying environmental constraints operating at the global scale. We experimentally simulated, under standard laboratory conditions, rewetting of leaves, riverbed sediments, and epilithic biofilms collected during the dry phase across 205 IRES from five major climate zones. We determined the amounts and qualitative characteristics of the leached nutrients and OM, and estimated their areal fluxes from riverbeds. In addition, we evaluated the variance in leachate characteristics in relation to selected environmental variables and substrate characteristics. We found that sediments, due to their large quantities within riverbeds, contribute most to the overall flux of dissolved substances during rewetting events (56%-98%), and that flux rates distinctly differ among climate zones. Dissolved organic carbon, phenolics, and nitrate contributed most to the areal fluxes. The largest amounts of leached substances were found in the continental climate zone, coinciding with the lowest potential bioavailability of the leached OM. The opposite pattern was found in the arid zone. Environmental variables expected to be modified under climate change (i.e. potential evapotranspiration, aridity, dry period duration, land use) were correlated with the amount of leached substances, with the strongest relationship found for sediments. These results show that the role of IRES should be accounted for in global biogeochemical cycles, especially because prevalence of IRES will increase due to increasing severity of drying events.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy