SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Cane Gaëlle) "

Sökning: WFRF:(Cane Gaëlle)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Cane, Gaëlle, et al. (författare)
  • Protein Diagnostics by Proximity Ligation: Combining Multiple Recognition and DNA Amplification for Improved Protein Analyses
  • 2017. - 3
  • Ingår i: Molecular Diagnostics (Third Edition). - 2016 : Academia Press. - 9780128029718 ; , s. 219-231
  • Bokkapitel (refereegranskat)abstract
    • Proximity ligation assay (PLA) is a unique method in which single-stranded oligonucleotides are conjugated to affinity binders of proteins, followed by amplification of the signal by DNA polymerization and hybridization of complementary oligonucleotides labeled with fluorogenic or chromogenic readout. Here, a brief overview of the field of protein analysis describes the background and the initial development of the technique for the detection of protein–protein interactions via the proximity probes mentioned. In this context, PLA can constrain the general problem of cross-reactivity in protein detection by affinity binders, by ensuring that only cognate pairs of proximity probes result in a signal. Thereafter, this chapter deals mainly with derivatives methods and their applications, with a particular interest in improved specificity, application to various biological materials, and multiplexing. The method has been applied in situ and in solution, adapted for the detection of posttranslational modifications such as phosphorylation and interactions between proteins and specific DNA sequences, and multiplexed to a certain extent, which illustrates its versatility. A technique free from enzymatic reaction, the hybridization chain reaction, can be considered a cost-effective alternative particularly suitable to molecular diagnostics. Finally, we explore further development toward higher-level multiplexing and sensitivity. At this point it is not clear what level can be achieved by PLA, but the assay is compatible with a wide range of readout, including separate real-time amplification reactions and novel microfluidic read-out platforms.
  •  
2.
  • Kashyap, Abhishek S., et al. (författare)
  • Antagonists of IGF : Vitronectin Interactions Inhibit IGF-I-Induced Breast Cancer Cell Functions
  • 2016
  • Ingår i: Molecular Cancer Therapeutics. - 1535-7163 .- 1538-8514. ; 15:7, s. 1602-1613
  • Tidskriftsartikel (refereegranskat)abstract
    • We provide proof-of-concept evidence for a new class of therapeutics that target growth factor: extracellular matrix (GF: ECM) interactions for the management of breast cancer. Insulinlike growth factor-I (IGF-I) forms multiprotein complexes with IGF-binding proteins (IGFBP) and the ECM protein vitronectin (VN), and stimulates the survival, migration and invasion of breast cancer cells. For the first time we provide physical evidence for IGFBP-3: VN interactions in breast cancer patient tissues; these interactions were predominantly localized to tumor cell clusters and in stroma surrounding tumor cells. We show that disruption of IGF-I: IGFBP: VN complexes with L27-IGF-II inhibits IGF-I: IGFBP: VN-stimulated breast cancer cell migration and proliferation in two-and three-dimensional assay systems. Peptide arrays screened to identify regions critical for the IGFBP-3/-5: VN and IGF-II: VN interactions demonstrated IGFBP-3/-5 and IGF-II binds VN through the hemopexin-2 domain, and VN binds IGFBP-3 at residues not involved in the binding of IGF-I to IGFBP-3. IGFBP-interacting VN peptides identified from these peptide arrays disrupted the IGF-I: IGFBP: VN complex, impeded the growth of primary tumor-like spheroids and, more importantly, inhibited the invasion of metastatic breast cancer cells in 3D assay systems. These studies provide first-in-field evidence for the utility of small peptides in antagonizing GF: ECM-mediated biologic functions and present data demonstrating the potential of these peptide antagonists as novel therapeutics.
  •  
3.
  • Koos, Björn, et al. (författare)
  • Analysis of protein interactions in situ by proximity ligation assays
  • 2014
  • Ingår i: High-Dimensional Single Cell Analysis. - Berlin, Heidelberg : Springer. ; , s. 111-26
  • Bokkapitel (refereegranskat)abstract
    • The fate of the cell is governed by interactions among proteins, nucleic acids, and other biomolecules. It is vital to look at these interactions in a cellular environment if we want to increase our understanding of cellular processes. Herein we will describe how the in situ proximity ligation assay (in situ PLA) can be used to visualize protein interactions in fixed cells and tissues. In situ PLA is a novel technique that uses DNA, together with DNA modifying processes such as ligation, cleavage, and polymerization, as tools to create surrogate markers for protein interactions of interest. Different in situ PLA designs make it possible not only to detect protein-protein interactions but also post-translational modifications and interactions of proteins with nucleic acids. Flexibility in DNA probe design and the multitude of different DNA modifying enzymes provide the basis for modifications of the method to make it suitable to use in many applications. Furthermore, examples of how in situ PLA can be combined with other methods for a comprehensive view of the cellular activity status are discussed.
  •  
4.
  • Koos, Björn, et al. (författare)
  • Proximity Depended Initiation of Hybridization Chain Reaction
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Background: Sensitive detection of protein interactions and post-translational modifications of native proteins is a challenge for research and diagnostic purposes. A method for this, which could be used in point of care devices should be cheap and robust.Results: Building on hybridization chain reaction, we designed a four hairpin system which is metastable in solution at 37°C for several hours and undergoes rapid signal amplification upon introduction of an initiator oligonucleotide. When the proximity hairpins are conjugated to antibodies these proximity probes in combination with the HCR hairpins and the initiator oligonucleotide provide a specific, enzyme free method to detect HIF-1α/HIF-1β and potentially other protein interactions and PTMs in situ. Furthermore it was possible to detect single proteins in the different compartments of the cell, further proving the specificity of this technique.Conclusion: In this study we present proximity dependent HCR, which is a cheap and robust method to detect protein interactions and post-translational modifications. Because of its independence from enzymes the technique has only low demands on storage and handling which makes it interesting for point of care devices.
  •  
5.
  • Koos, Björn, et al. (författare)
  • Proximity-dependent initiation of hybridization chain reaction
  • 2015
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • Sensitive detection of protein interactions and post-translational modifications of native proteins is a challenge for research and diagnostic purposes. A method for this, which could be used in point-of-care devices and high-throughput screening, should be reliable, cost effective and robust. To achieve this, here we design a method (proxHCR) that combines the need for proximal binding with hybridization chain reaction (HCR) for signal amplification. When two oligonucleotide hairpins conjugated to antibodies bind in close proximity, they can be activated to reveal an initiator sequence. This starts a chain reaction of hybridization events between a pair of fluorophore-labelled oligonucleotide hairpins, generating a fluorescent product. In conclusion, we show the applicability of the proxHCR method for the detection of protein interactions and posttranslational modifications in microscopy and flow cytometry. As no enzymes are needed, proxHCR may be an inexpensive and robust alternative to proximity ligation assays.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy