SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Cannavacciuolo Antonio) "

Search: WFRF:(Cannavacciuolo Antonio)

  • Result 1-2 of 2
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Cannavacciuolo, Antonio, et al. (author)
  • Facial emotion expressivity in patients with Parkinson's and Alzheimer's disease
  • 2024
  • In: Journal of neural transmission. - 0300-9564 .- 1435-1463. ; 31, s. 31-41
  • Journal article (peer-reviewed)abstract
    • Parkinson’s disease (PD) and Alzheimer’s disease (AD) are neurodegenerative disorders with some overlapping clinical features. Hypomimia (reduced facial expressivity) is a prominent sign of PD and it is also present in AD. However, no study has experimentally assessed hypomimia in AD and compared facial expressivity between PD and AD patients. We compared facial emotion expressivity in patients with PD, AD, and healthy controls (HCs). Twenty-four PD patients, 24 AD patients and 24 HCs were videotaped during neutral facial expressions and while posing six facial emotions (anger, surprise, disgust, fear, happiness, and sadness). Fifteen raters were asked to evaluate the videos using MDS-UPDRS-III (item 3.2) and to identify the corresponding emotion from a seven-forced-choice response format. We measured the percentage of accuracy, the reaction time (RT), and the confidence level (CL) in the perceived accuracy of the raters’ responses. We found the highest MDS-UPDRS 3.2 scores in PD, and higher in AD than HCs. When evaluating the posed expression captures, raters identified a lower percentage of correct answers in the PD and AD groups than HCs. There was no difference in raters’ response accuracy between the PD and AD. No difference was observed in RT and CL data between groups. Hypomimia in patients correlated positively with the global MDS-UPDRS-III and negatively with Mini Mental State Examination scores. PD and AD patients have a similar pattern of reduced facial emotion expressivity compared to controls. These findings hold potential pathophysiological and clinical implications.
  •  
2.
  • Curcio, Davide, et al. (author)
  • Current-driven insulator-to-metal transition without Mott breakdown in Ca2RuO4
  • 2023
  • In: Physical Review B. - 2469-9950. ; 108:16
  • Journal article (peer-reviewed)abstract
    • The electrical control of a material's conductivity is at the heart of modern electronics. Conventionally, this control is achieved by tuning the density of mobile charge carriers. A completely different approach is possible in Mott insulators such as Ca2RuO4, where an insulator-to-metal transition (IMT) can be induced by a weak electric field or current. While the driving force of the IMT is poorly understood, it has been thought to be a breakdown of the Mott state. Using in operando angle-resolved photoemission spectroscopy, we show that this is not the case: The current-induced conductivity is caused by the formation of in-gap states with only a minor reorganization of the Mott state. Electronic structure calculations show that these in-gap states form at the boundaries of structural domains that emerge during the IMT. At such boundaries, the overall gap is drastically reduced, even if the structural difference between the domains is small and the individual domains retain their Mott character. The inhomogeneity of the sample is thus key to understanding the IMT, as it leads to a nonequilibrium semimetallic state that forms at the interface of Mott domains.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-2 of 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view