SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Cantoni V) "

Sökning: WFRF:(Cantoni V)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Benussi, A., et al. (författare)
  • Differences and similarities between familial and sporadic frontotemporal dementia: An Italian single-center cohort study
  • 2022
  • Ingår i: Alzheimer's and Dementia: Translational Research and Clinical Interventions. - : Wiley. - 2352-8737. ; 8:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction The possibility to generalize our understandings on treatments and assessments to both familial frontotemporal dementia (f-FTD) and sporadic FTD (s-FTD) is a fundamental perspective for the near future, considering the constant advancement in potential disease-modifying therapies that target particular genetic forms of FTD. We aimed to investigate differences in clinical features, cerebrospinal fluid (CSF), and blood-based biomarkers between f-FTD and s-FTD. Methods In this longitudinal cohort study, we evaluated a consecutive sample of symptomatic FTD patients, classified as f-FTD and s-FTD according to Goldman scores (GS). All patients underwent clinical, behavioral, and neuropsychiatric symptom assessment, CSF biomarkers and serum neurofilament light (NfL) analysis, and brain atrophy evaluation with magnetic resonance imaging. Results Of 570 patients with FTD, 123 were classified as f-FTD, and 447 as s-FTD. In the f-FTD group, 95 had a pathogenic FTD mutation while 28 were classified as GS = 1 or 2; of the s-FTD group, 133 were classified as GS = 3 and 314 with GS = 4. f-FTD and s-FTD cases showed comparable demographic features, except for younger age at disease onset, age at diagnosis, and higher years of education in the f-FTD group (all P < .05). f-FTD showed worse behavioral disturbances as measured with Frontal Behavioral Inventory (FBI) negative behaviors (14.0 +/- 7.6 vs. 11.6 +/- 7.4, P = .002), and positive behaviors (20.0 +/- 11.0 vs. 17.4 +/- 11.8, P = .031). Serum NfL concentrations were higher in patients with f-FTD (70.9 +/- 37.9 pg/mL) compared to s-FTD patients (37.3 +/- 24.2 pg/mL, P < .001), and f-FTD showed greater brain atrophy in the frontal and temporal regions and basal ganglia. Patients with f-FTD had significantly shorter survival than those with s-FTD (P = .004). Discussion f-FTD and s-FTD are very similar clinical entities, but with different biological mechanisms, and different rates of progression. The parallel characterization of both f-FTD and s-FTD will improve our understanding of the disease, and aid in designing future clinical trials for both genetic and sporadic forms of FTD. Highlights Do clinical features and biomarkers differ between patients with familial frontotemporal dementia (f-FTD) and sporadic FTD (s-FTD)? In this cohort study of 570 patients with FTD, f-FTD and s-FTD share similar demographic features, but with younger age at disease onset and diagnosis in the f-FTD group. f-FTD showed higher serum neurofilament light concentrations, greater brain damage, and shorter survival, compared to s-FTD. f-FTD and s-FTD are very similar clinical entities, but with different cognitive reserve mechanisms and different rates of progression.
  •  
3.
  • Benussi, A., et al. (författare)
  • Classification accuracy of blood-based and neurophysiological markers in the differential diagnosis of Alzheimer's disease and frontotemporal lobar degeneration
  • 2022
  • Ingår i: Alzheimers Research & Therapy. - : Springer Science and Business Media LLC. - 1758-9193. ; 14:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background In the last decade, non-invasive blood-based and neurophysiological biomarkers have shown great potential for the discrimination of several neurodegenerative disorders. However, in the clinical workup of patients with cognitive impairment, it will be highly unlikely that any biomarker will achieve the highest potential predictive accuracy on its own, owing to the multifactorial nature of Alzheimer's disease (AD) and frontotemporal lobar degeneration (FTLD). Methods In this retrospective study, performed on 202 participants, we analysed plasma neurofilament light (NfL), glial fibrillary acidic protein (GFAP), and tau phosphorylated at amino acid 181 (p-Tau(181)) concentrations, as well as amyloid beta 42 to 40 ratio (A beta(1-42)/(1-40)) ratio, using the ultrasensitive single-molecule array (Simoa) technique, and neurophysiological measures obtained by transcranial magnetic stimulation (TMS), including short-interval intracortical inhibition (SICI), intracortical facilitation (ICF), long-interval intracortical inhibition (LICI), and short-latency afferent inhibition (SAI). We assessed the diagnostic accuracy of combinations of both plasma and neurophysiological biomarkers in the differential diagnosis between healthy ageing, AD, and FTLD. Results We observed significant differences in plasma NfL, GFAP, and p-Tau(181) levels between the groups, but not for the A beta(1-42)/A beta(1-40) ratio. For the evaluation of diagnostic accuracy, we adopted a two-step process which reflects the clinical judgement on clinical grounds. In the first step, the best single biomarker to classify "cases" vs "controls" was NfL (AUC 0.94, p < 0.001), whilst in the second step, the best single biomarker to classify AD vs FTLD was SAI (AUC 0.96, p < 0.001). The combination of multiple biomarkers significantly increased diagnostic accuracy. The best model for classifying "cases" vs "controls" included the predictors p-Tau(181), GFAP, NfL, SICI, ICF, and SAI, resulting in an AUC of 0.99 (p < 0.001). For the second step, classifying AD from FTD, the best model included the combination of A beta(1-42)/A beta(1-40) ratio, p-Tau(181), SICI, ICF, and SAI, resulting in an AUC of 0.98 (p < 0.001). Conclusions The combined assessment of plasma and neurophysiological measures may greatly improve the differential diagnosis of AD and FTLD.
  •  
4.
  •  
5.
  • Deming, Y., et al. (författare)
  • The MS4A gene cluster is a key modulator of soluble TREM2 and Alzheimer's disease risk
  • 2019
  • Ingår i: Science Translational Medicine. - : American Association for the Advancement of Science (AAAS). - 1946-6234 .- 1946-6242. ; 11:505
  • Tidskriftsartikel (refereegranskat)abstract
    • Soluble triggering receptor expressed on myeloid cells 2 (sTREM2) in cerebrospinal fluid (CSF) has been associated with Alzheimer's disease (AD). TREM2 plays a critical role in microglial activation, survival, and phagocytosis; however, the pathophysiological role of sTREM2 in AD is not well understood. Understanding the role of sTREM2 in AD may reveal new pathological mechanisms and lead to the identification of therapeutic targets. We performed a genome-wide association study (GWAS) to identify genetic modifiers of CSF sTREM2 obtained from the Alzheimer's Disease Neuroimaging Initiative. Common variants in the membrane-spanning 4-domains subfamily A (MS4A) gene region were associated with CSF sTREM2 concentrations (rs1582763; P = 1.15 x 10(-15)); this was replicated in independent datasets. The variants associated with increased CSF sTREM2 concentrations were associated with reduced AD risk and delayed age at onset of disease. The single-nucleotide polymorphism rs1582763 modified expression of the MS4A4A and MS4A6A genes in multiple tissues, suggesting that one or both of these genes are important for modulating sTREM2 production. Using human macrophages as a proxy for microglia, we found that MS4A4A and TREM2 colocalized on lipid rafts at the plasma membrane, that sTREM2 increased with MS4A4A overexpression, and that silencing of MS4A4A reduced sTREM2 production. These genetic, molecular, and cellular findings suggest that MS4A4A modulates sTREM2. These findings also provide a mechanistic explanation for the original GWAS signal in the MS4A locus for AD risk and indicate that TREM2 may be involved in AD pathogenesis not only in TREM2 risk-variant carriers but also in those with sporadic disease.
  •  
6.
  • Heiss, M., et al. (författare)
  • Self-assembled quantum dots in a nanowire system for quantum photonics
  • 2013
  • Ingår i: Nature Materials. - 1476-4660. ; 12:5, s. 439-444
  • Tidskriftsartikel (refereegranskat)abstract
    • Quantum dots embedded within nanowires represent one of the most promising technologies for applications in quantum photonics. Whereas the top-down fabrication of such structures remains a technological challenge, their bottom-up fabrication through self-assembly is a potentially more powerful strategy. However, present approaches often yield quantum dots with large optical linewidths, making reproducibility of their physical properties difficult. We present a versatile quantum-dot-innanowire system that reproducibly self-assembles in core-shell GaAs/AlGaAs nanowires. The quantum dots form at the apex of a GaAs/AlGaAs interface, are highly stable, and can be positioned with nanometre precision relative to the nanowire centre. Unusually, their emission is blue-shifted relative to the lowest energy continuum states of the GaAs core. Large-scale electronic structure calculations show that the origin of the optical transitions lies in quantum confinement due to Al-rich barriers. By emitting in the red and self-assembling on silicon substrates, these quantum dots could therefore become building blocks for solid-state lighting devices and third-generation solar cells.
  •  
7.
  • Meda, Francisco J, 1997, et al. (författare)
  • Analytical and clinical validation of a blood progranulin ELISA in frontotemporal dementias
  • 2023
  • Ingår i: Clinical Chemistry and Laboratory Medicine. - 1434-6621. ; 61:12, s. 2195-2204
  • Tidskriftsartikel (refereegranskat)abstract
    • Objectives: Heterozygous mutations in the granulin (GRN) gene may result in haploinsufficiency of progranulin (PGRN), which might lead to frontotemporal dementia (FTD). In this study, we aimed to perform analytical and clinical validation of a commercial progranulin kit for clinical use. Methods: Analytical validation parameters including assay precision, selectivity, measurement range, dilution linearity, interferences and sample stability were tested according to previously described procedures. For clinical validation, PGRN levels were measured in plasma from 32 cognitively healthy individuals, 52 confirmed GRN mutation carriers, 25 C9orf72 mutation carriers and 216 patients with different neurodegenerative diseases of which 70 were confirmed as non-mutation carriers. Results: Among the analytical validation parameters, assay precision and repeatability were very stable (coefficients of variation <7 %). Spike recovery was 96 %, the measurement range was 6.25-400 mu g/L and dilution linearity ranged from 1:50-1:200. Hemolysis did not interfere with progranulin levels, and these were resistant to freeze/thaw cycles and storage at different temperatures. For the clinical validation, the assay was capable of distinguishing GRN mutation carriers from controls and non-GRN mutation carriers with very good sensitivity and specificity at a cut-off of 57 mu g/L (97 %, 100 %, respectively). Conclusions: In this study, we demonstrate robust analytical and diagnostic performance of this commercial progranulin kit for implementation in clinical laboratory practice. This easy-to-use test allows identification of potential GRN mutation carriers, which may guide further evaluation of the patient. This assay might also be used to evaluate the effect of novel PGRN-targeting drugs and therapies.
  •  
8.
  •  
9.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy