SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Cao Hao 1988 ) "

Sökning: WFRF:(Cao Hao 1988 )

  • Resultat 1-10 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Zhang, Liang, et al. (författare)
  • Deep Learning for Additive Screening in Perovskite Light-Emitting Diodes
  • 2022
  • Ingår i: Angewandte Chemie International Edition. - : WILEY-V C H VERLAG GMBH. - 1433-7851 .- 1521-3773. ; 61:37
  • Tidskriftsartikel (refereegranskat)abstract
    • Additive engineering with organic molecules is of critical importance for achieving high-performance perovskite optoelectronic devices. However, experimentally finding suitable additives is costly and time consuming, while conventional machine learning (ML) is difficult to predict accurately due to the limited experimental data available in this relatively new field. Here, we demonstrate a deep learning method that can predict the effectiveness of additives in perovskite light-emitting diodes (PeLEDs) with a high accuracy up to 96 % by using a small dataset of 132 molecules. This model can maximize the information of the molecules and significantly mitigate the duplicated problem that usually happened with previous models in ML for molecular screening. Very high efficiency PeLEDs with a peak external quantum efficiency up to 22.7 % can be achieved by using the predicated additive. Our work opens a new avenue for further boosting the performance of perovskite optoelectronic devices.
  •  
2.
  • Zhang, Linyu, et al. (författare)
  • miR-125b promotes tau phosphorylation by targeting the neural cell adhesion molecule in neuropathological progression
  • 2019
  • Ingår i: Neurobiology of Aging. - : ELSEVIER SCIENCE INC. - 0197-4580 .- 1558-1497. ; 73, s. 41-49
  • Tidskriftsartikel (refereegranskat)abstract
    • MicroRNAs, small noncoding RNAs, not only regulate gene expression at the post-transcriptional level in a variety of physiological processes but also accompany the initiation and progression of a vast number of diseases, including dementia. While miR-125b has been shown to be aberrantly expressed in some dementia patients, its role in the pathological process remains ambiguous. Presenilin-1/2 conditional double knockout mice exhibit a range of symptoms, including impaired cognition and memory, increased tau phosphorylation, neuroinflammation, and apoptosis, and are therefore regarded as a useful dementia model. In the prefrontal cortices of double knockout mice, miR-125b was found to be abnormally increased in an age-dependent manner. We further verified the neural cell adhesion molecule (NCAM) as an miR-125b target using the dual luciferase reporter assay. The NCAM protein level was decreased when miR-125b was overexpressed (OE) in neuronal growth factor-induced differentiated PC12 cells, which further inhibited the neuronal growth factor-induced phosphorylation of glycogen synthase kinase 3 beta (GSK beta) at the Ser9 site and ultimately increased the GSK3 beta activity and tau phosphorylation. Moreover, on serum deprivation, high GSK3 beta activity in differentiated miR-125b-OE PC12 cells induced increased caspase-3 activation. Finally, adeno-associated virus-mediated miR-125b overexpression in the prefrontal cortexes of wild-type C57B/L6 mice resulted in decreased dendritic spine density. In addition, similar to the in vitro data, elevated GSK3 beta activity and hyperphosphorylation of the tau protein were confirmed. Taken together, our findings reveal a direct regulation of miR-125b on NCAM, which leads to further effects on downstream GSK3 beta activity and tau phosphorylation and may contribute to the generation of neurofibrillary tangles in neuropathological progression. 
  •  
3.
  • Cao, Hao, 1988-, et al. (författare)
  • Developmental bisphenol A diglycidyl ether (BADGE) exposure causes cell over-proliferation in Drosophila
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Since the estrogenic activity of bisphenol A had been reported, the industry started to find a proper replacement. Bisphenol A diglycidyl ether (BADGE) is one of the derivatives of BPA which is used widely in epoxy resin manufactory. Recently, some studies have demonstrated the adverse effects of BADGE on reproduction and development. However, the knowledge of BADGE is still scarce. Because of its hydrolytic property, BADGE is usually detected at a low level in commodities and the influences seem to be underestimated. In our study, we use the whole transcriptome sequencing to assess the effects of developmental BADGE exposure on Drosophila melanogaster. Notably, the genes related to cell proliferation are significantly affected by BADGE exposure. More detailed, a group of mitotic genes, including string (stg, human CDC25A), Cyclin B (CycB, human CCNB1), Cyclin E (CycE, human CCNE1), and pan gu (png, human NEK11), are detectable overexpressed. Phenotypically, we observe that BADGE induces severe hemocytes over-proliferation in the 3rd instar larvae, but does not cause morphological damage of the larval lymph gland and blood circulation. In conclusion, we provide evidence to show the carcinogenic potential of BADGE and raise the concern of better understanding of xenobiotics. 
  •  
4.
  • Cao, Hao, 1988-, et al. (författare)
  • Multidrug-Resistance like Protein 1 activity in Malpighian tubules regulates lipid homeostasis in Drosophila
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Multidrug-Resistance like Proteins (MRPs) are ubiquitously expressed essential transporters required for many biological processes. Previous studies revealed that MRPs are pivotal for transporting endo- and xenobiotics, conferring resistance to anti-cancer agents and contributing to clearance of oxidative products. Nonetheless, their functions in other biological processes are still unclear. In our investigation, we suppress the expression of Drosophila Multidrug resistance like Protein 1 (MRP) in Malpighian tubules, the functional equivalent to the human kidney, and find this is sufficient to cause abnormal lipid accumulation, as well as disrupt normal feeding patterns. In addition, we suggest that the elevation of lipid contents may be a result of increasing Hr96 (homolog of human Pregnane X receptor) expression, which is known to play a role in detoxification and lipid metabolism processes. Finally, we validate that Malpighian tubules-specific MRP deficiency increases oxidative resistance in fruit flies. In summary, our results demonstrate that inadequate MRP expression in Malpighian tubules can lead to disrupted lipid homeostasis and feeding behavior. However, it may also elevate the oxidative resistance of the flies.
  •  
5.
  • Cao, Zhejian, 1991, et al. (författare)
  • Synthesis of Metal-Organic Frameworks through Enzymatically Recycled Polyethylene Terephthalate
  • 2023
  • Ingår i: ACS Sustainable Chemistry & Engineering. - 2168-0485. ; 11:43, s. 15506-15512
  • Tidskriftsartikel (refereegranskat)abstract
    • Polyethylene terephthalate (PET) as one of the most produced plastics contributes to global waste pollution. Upcycling PET into value-added products therefore is of environmental and economic interest. Terephthalic acid (TPA), the monomer of PET, is a common linker for metal-organic framework (MOF) synthesis; thus, PET-to-MOF upcycling raises much research attention. However, conventional PET-to-MOF upcycling often requires PET depolymerization with strong acids or bases and high temperatures, which can lead to environmental and energy penalties. As an alternative, PETase offers a sustainable approach to depolymerizing PET under mesophilic and mild pH conditions. Here we report UiO-66, MOF-5, and MIL-101 syntheses using enzymatically recycled TPA as linkers. The enzymatically recycled TPA demonstrated low impurity, and the obtained MOFs possessed comparable crystallinity, thermal stability, and surface area. These results reveal the feasibility of MOF synthesis by using enzymatically recycled PET.
  •  
6.
  • Chen, Hao, 1988, et al. (författare)
  • Comparative Study and Design Optimization of a Dual-Mechanical-Port Electric Machine for Hybrid Electric Vehicle Applications
  • 2022
  • Ingår i: IEEE Transactions on Vehicular Technology. - 0018-9545 .- 1939-9359. ; 71:8, s. 8341-8353
  • Tidskriftsartikel (refereegranskat)abstract
    • A new dual-mechanical-port (DMP) electric machine for hybrid electric vehicle applications, particularly in the power-split continuously variable transmission systems, is proposed in this paper. In order to comprehensively and quantitatively evaluate the pros and cons of the proposed machine, a comparative study of four DMP electric machines with different topologies is conducted. These four investigated DMP electric machines include a conventional DMP machine, a DMP machine with spoke-type permanent magnets, a DMP machine with reluctance rotor, and a DMP machine with open slots which is the proposed machine in this paper. Even though these four machines have similar topologies, they have different operating principles, which are demonstrated in detail. The comparison results indicate that the DMP machine with open slots outperforms the others in terms of torque/power density, efficiency, magnet utilization, etc. Accordingly, the DMP machine with open slots is selected for further investigation and optimization. A large-scale multi-objective optimization is carried out for this machine, where the differential evolution algorithm serves as a global search engine to target optimal performance. Finally, an optimal design is prototyped, and the experimental results are performed to verify the effectiveness of the analysis and simulation results in this paper.
  •  
7.
  • Liu, Wen, et al. (författare)
  • Dibutyl phthalate disrupts conserved circadian rhythm in Drosophila and human cells
  • 2021
  • Ingår i: Science of the Total Environment. - : Elsevier. - 0048-9697 .- 1879-1026. ; 783
  • Tidskriftsartikel (refereegranskat)abstract
    • People are constantly exposed to phthalates, due to their common use in the production of plastics, pharmaceuticals, cosmetics and skin care products. The ability of phthalates to disrupt endocrine signaling, leading to developmental, reproductive and metabolic defects, has been studied, yet how phthalates interfere with these biological functions is still unclear. To uncover DBP interacting molecular pathways, we raised Drosophila melanogaster on food containing dibutyl phthalate (DBP) at various concentrations. Whole transcriptome analysis of adult Drosophila reveals that DBP exposure throughout development disrupts the expression of genes central to circadian rhythm regulation, including increased expression of vrille (vri, human NFIL3), timeless (tim, human TIMELESS) and period (per, human PER3), with decreased expression of Pigment-dispersing factor (Pdf). DBP exposure also alters the expression of the evolutionarily conserved nuclear receptor Hormone receptor-like in 38 (Hr38, human NR4A2), which is known to regulate Pdf expression. Furthermore, behavioral assays determined that exposing Drosophila to DBP throughout development modifies the circadian rhythm of adults. Although DBP inhibits the expression of signaling systems regulating vision, including Rh5 and Rh6, two light-sensing G-protein coupled receptors involved in the daily resetting of circadian rhythm, it does not influence eye development. Circadian rhythm genes are well conserved from flies to humans; therefore, we tested the effect of DBP exposure on human breast cells (MCF10A) and demonstrate that, similar to the fruit fly model, this exposure disrupts circadian rhythm (BMAL1 expression) at doses that promote the proliferation and migration ability of MCF10A cells. Our results are the first to provide comprehensive evidence that DBP interferes with circadian rhythm in both adult Drosophila and human cells, which may help to explain the broad physiological action of phthalates.
  •  
8.
  • Liu, Wen, et al. (författare)
  • Multidrug Resistance Like Protein 1 Activity in Malpighian Tubules Regulates Lipid Homeostasis in Drosophila
  • 2021
  • Ingår i: Membranes. - : MDPI. - 2077-0375. ; 11:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Simple Summary Multidrug resistance proteins (MRPs) are important for ion transport, toxin/xenobiotic secretion, and signal transduction. Although studies have been undertaken to understand their physiological function, it is not fully known how MRPs may regulate metabolism. We knocked down the expression of Drosophila multidrug-resistance like protein 1 (MRP) in several tissues central to metabolic regulation. Reducing MRP in Malpighian tubules, the functional equivalent to the human kidney, was sufficient to disrupt metabolic homeostasis, owing to abnormal lipid accumulation, as well as changes in feeding behavior. It also increased oxidative stress resistance in adult flies, possibly due to reduced levels of reactive oxygen species. Multidrug resistance proteins (MRPs), members of the ATP-binding cassette transporter (ABC transporter) family, are pivotal for transporting endo- and xenobiotics, which confer resistance to anticancer agents and contribute to the clearance of oxidative products. However, their function in many biological processes is still unclear. We investigated the role of an evolutionarily conserved MRP in metabolic homeostasis by knocking down the expression of Drosophila multidrug-resistance like protein 1 (MRP) in several tissues involved in regulating metabolism, including the gut, fat body, and Malpighian tubules. Interestingly, only suppression of MRP in the Malpighian tubules, the functional equivalent to the human kidney, was sufficient to cause abnormal lipid accumulation and disrupt feeding behavior. Furthermore, reduced Malpighian tubule MRP expression resulted in increased Hr96 (homolog of human pregnane X receptor) expression. Hr96 is known to play a role in detoxification and lipid metabolism processes. Reduced expression of MRP in the Malpighian tubules also conveyed resistance to oxidative stress, as well as reduced normal levels of reactive oxygen species in adult flies. This study reveals that an evolutionarily conserved MRP is required in Drosophila Malpighian tubules for proper metabolic homeostasis.
  •  
9.
  • Wang, S. T., et al. (författare)
  • A Fully Conjugated 3D Covalent Organic Framework Exhibiting Band-like Transport with Ultrahigh Electron Mobility
  • 2021
  • Ingår i: Angewandte Chemie-International Edition. - : Wiley. - 1433-7851 .- 1521-3773. ; 133:17, s. 9407-9411
  • Tidskriftsartikel (refereegranskat)abstract
    • Although pi-conjugated two dimensional (2D) covalent organic frameworks (COFs) have been extensively reported, developing fully pi-conjugated 3D COFs is still an extremely difficult problem due to the lack of fully pi-conjugated 3D linkers. We synthesize a fully conjugated 3D COF (BUCT-COF-1) by designing a saddle-shaped building block of aldehyde-substituted cyclooctatetrathiophene (COThP)-CHO. As a consequence of the fully conjugated 3D network, BUCT-COF-1 demonstrates ultrahigh Hall electron mobility up to approximate to 3.0 cm(2) V-1 s(-1) at room temperature, which is one order of magnitude higher than the current pi-conjugated 2D COFs. Temperature-dependent conductivity measurements reveal that the charge carriers in BUCT- COF-1 exhibit the band-like transport mechanism, which is entirely different from the hopping transport phenomena observed in common organic materials. The findings indicate that fully conjugated 3D COFs can achieve electron delocalization and charge-transport pathways within the whole 3D skeleton, which may open up a new frontier in the design of organic semiconducting materials.
  •  
10.
  • Wiemerslage, Lyle, et al. (författare)
  • A DNA methylation site within the KLF13 gene is associated with orexigenic processes based on neural responses and ghrelin levels
  • 2017
  • Ingår i: International Journal of Obesity. - : Springer Science and Business Media LLC. - 0307-0565 .- 1476-5497. ; 41:6, s. 990-994
  • Tidskriftsartikel (refereegranskat)abstract
    • We investigated five methylation markers recently linked to body-mass index, for their role in the neuropathology of obesity. In neuroimaging experiments, our analysis involving 23 participants showed that methylation levels for the cg07814318 site, which lies within the KLF13 gene, correlated with brain activity in the claustrum, putamen, cingulate gyrus, and frontal gyri, some of which have been previously associated to food signaling, obesity, or reward. Methylation levels at cg07814318 also positively correlated with ghrelin levels. Moreover, expression of KLF13 was augmented in the brains of obese and starved mice. Our results suggest the cg07814318 site could be involved in orexigenic processes, and also implicate KLF13 in obesity. Our findings are the first to associate methylation levels in blood with brain activity in obesity-related regions, and further support previous findings between ghrelin, brain activity, and genetic differences.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy