SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Cao Renzhi) "

Sökning: WFRF:(Cao Renzhi)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • 2019
  • Tidskriftsartikel (refereegranskat)
  •  
2.
  • Keasar, Chen, et al. (författare)
  • An analysis and evaluation of the WeFold collaborative for protein structure prediction and its pipelines in CASP11 and CASP12
  • 2018
  • Ingår i: Scientific Reports. - : NATURE PUBLISHING GROUP. - 2045-2322. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • Every two years groups worldwide participate in the Critical Assessment of Protein Structure Prediction (CASP) experiment to blindly test the strengths and weaknesses of their computational methods. CASP has significantly advanced the field but many hurdles still remain, which may require new ideas and collaborations. In 2012 a web-based effort called WeFold, was initiated to promote collaboration within the CASP community and attract researchers from other fields to contribute new ideas to CASP. Members of the WeFold coopetition (cooperation and competition) participated in CASP as individual teams, but also shared components of their methods to create hybrid pipelines and actively contributed to this effort. We assert that the scale and diversity of integrative prediction pipelines could not have been achieved by any individual lab or even by any collaboration among a few partners. The models contributed by the participating groups and generated by the pipelines are publicly available at the WeFold website providing a wealth of data that remains to be tapped. Here, we analyze the results of the 2014 and 2016 pipelines showing improvements according to the CASP assessment as well as areas that require further adjustments and research.
  •  
3.
  • Miao, Yanfeng, et al. (författare)
  • Stable and bright formamidinium-based perovskite light-emitting diodes with high energy conversion efficiency
  • 2019
  • Ingår i: Nature Communications. - : NATURE PUBLISHING GROUP. - 2041-1723. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • Solution-processable perovskites show highly emissive and good charge transport, making them attractive for low-cost light-emitting diodes (LEDs) with high energy conversion efficiencies. Despite recent advances in device efficiency, the stability of perovskite LEDs is still a major obstacle. Here, we demonstrate stable and bright perovskite LEDs with high energy conversion efficiencies by optimizing formamidinium lead iodide films. Our LEDs show an energy conversion efficiency of 10.7%, and an external quantum efficiency of 14.2% without outcoupling enhancement through controlling the concentration of the precursor solutions. The device shows low efficiency droop, i.e. 8.3% energy conversion efficiency and 14.0% external quantum efficiency at a current density of 300 mA cm(-2), making the device more efficient than state-of-the-art organic and quantum-dot LEDs at high current densities. Furthermore, the half-lifetime of device with benzylamine treatment is 23.7 hr under a current density of 100 mA cm(-2), comparable to the lifetime of near-infrared organic LEDs.
  •  
4.
  • Yang, Rong, et al. (författare)
  • Inhomogeneous degradation in metal halide perovskites
  • 2017
  • Ingår i: Applied Physics Letters. - : AMER INST PHYSICS. - 0003-6951 .- 1077-3118. ; 111:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Although the rapid development of organic-inorganic metal halide perovskite solar cells has led to certified power conversion efficiencies of above 20%, their poor stability remains a major challenge, preventing their practical commercialization. In this paper, we investigate the intrinsic origin of the poor stability in perovskite solar cells by using a confocal fluorescence microscope. We find that the degradation of perovskite films starts from grain boundaries and gradually extend to the center of the grains. Firmly based on our findings, we further demonstrate that the device stability can be significantly enhanced by increasing the grain size of perovskite crystals. Our results have important implications to further enhance the stability of optoelectronic devices based on metal halide perovskites. Published by AIP Publishing.
  •  
5.
  • Yang, Rong, et al. (författare)
  • Oriented Quasi-2D Perovskites for High Performance Optoelectronic Devices
  • 2018
  • Ingår i: Advanced Materials. - : WILEY-V C H VERLAG GMBH. - 0935-9648 .- 1521-4095. ; 30:51
  • Tidskriftsartikel (refereegranskat)abstract
    • Quasi-2D layered organometal halide perovskites have recently emerged as promising candidates for solar cells, because of their intrinsic stability compared to 3D analogs. However, relatively low power conversion efficiency (PCE) limits the application of 2D layered perovskites in photovoltaics, due to large energy band gap, high exciton binding energy, and poor interlayer charge transport. Here, efficient and water-stable quasi-2D perovskite solar cells with a peak PCE of 18.20% by using 3-bromobenzylammonium iodide are demonstrated. The unencapsulated devices sustain over 82% of their initial efficiency after 2400 h under relative humidity of approximate to 40%, and show almost unchanged photovoltaic parameters after immersion into water for 60 s. The robust performance of perovskite solar cells results from the quasi-2D perovskite films with hydrophobic nature and a high degree of electronic order and high crystallinity, which consists of both ordered large-bandgap perovskites with the vertical growth in the bottom region and oriented small-bandgap components in the top region. Moreover, due to the suppressed nonradiative recombination, the unencapsulated photovoltaic devices can work well as light-emitting diodes (LEDs), exhibiting an external quantum efficiency of 3.85% and a long operational lifetime of approximate to 96 h at a high current density of 200 mA cm(-2) in air.
  •  
6.
  • Zou, Wei, et al. (författare)
  • Minimising efficiency roll-off in high-brightness perovskite light-emitting diodes
  • 2018
  • Ingår i: Nature Communications. - : NATURE PUBLISHING GROUP. - 2041-1723. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Efficiency roll-off is a major issue for most types of light-emitting diodes (LEDs), and its origins remain controversial. Here we present investigations of the efficiency roll-off in perovskite LEDs based on two-dimensional layered perovskites. By simultaneously measuring electroluminescence and photoluminescence on a working device, supported by transient photoluminescence decay measurements, we conclude that the efficiency roll-off in perovskite LEDs is mainly due to luminescence quenching which is likely caused by non-radiative Auger recombination. This detrimental effect can be suppressed by increasing the width of quantum wells, which can be easily realized in the layered perovskites by tuning the ratio of large and small organic cations in the precursor solution. This approach leads to the realization of a perovskite LED with a record external quantum efficiency of 12.7%, and the efficiency remains to be high, at approximately 10%, under a high current density of 500 mA cm(-2).
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy