SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Capo Eric) "

Sökning: WFRF:(Capo Eric)

  • Resultat 1-10 av 37
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Cabrol, Léa, et al. (författare)
  • Redox gradient shapes the abundance and diversity of mercury-methylating microorganisms along the water column of the Black Sea
  • 2023
  • Ingår i: mSystems. - : American Society for Microbiology. - 2379-5077. ; 8:4
  • Tidskriftsartikel (refereegranskat)abstract
    • In the global context of seawater deoxygenation triggered by climate change and anthropogenic activities, changes in redox gradients impacting biogeochemical transformations of pollutants, such as mercury, become more likely. Being the largest anoxic basin worldwide, with high concentrations of the potent neurotoxic methylmercury (MeHg), the Black Sea is an ideal natural laboratory to provide new insights about the link between dissolved oxygen concentration and hgcAB gene-carrying (hgc+) microorganisms involved in the formation of MeHg. We combined geochemical and microbial approaches to assess the effect of vertical redox gradients on abundance, diversity, and metabolic potential of hgc+ microorganisms in the Black Sea water column. The abundance of hgcA genes [congruently estimated by quantitative PCR (qPCR) and metagenomics] correlated with MeHg concentration, both maximal in the upper part of the anoxic water. Besides the predominant Desulfobacterales, hgc+ microorganisms belonged to a unique assemblage of diverse—previously underappreciated—anaerobic fermenters from Anaerolineales, Phycisphaerae (characteristic of the anoxic and sulfidic zone), Kiritimatiellales, and Bacteroidales (characteristic of the suboxic zone). The metabolic versatility of Desulfobacterota differed from strict sulfate reduction in the anoxic water to reduction of various electron acceptors in the suboxic water. Linking microbial activity and contaminant concentration in environmental studies is rare due to the complexity of biological pathways. In this study, we disentangle the role of oxygen in shaping the distribution of Hg-methylating microorganisms consistently with MeHg concentration, and we highlight their taxonomic and metabolic niche partitioning across redox gradients, improving the prediction of the response of marine communities to the expansion of oxygen-deficient zones. IMPORTANCE Methylmercury (MeHg) is a neurotoxin detected at high concentrations in certain marine ecosystems, posing a threat to human health. MeHg production is mainly mediated by hgcAB gene-carrying (hgc+) microorganisms. Oxygen is one of the main factors controlling Hg methylation; however, its effect on the diversity and ecology of hgc+ microorganisms remains unknown. Under the current context of seawater deoxygenation, mercury cycling is expected to be disturbed. Here, we show the strong effect of oxygen gradients on the distribution of potential Hg methylators. In addition, we show for the first time the significant contribution of a unique assemblage of potential fermenters from Anaerolineales, Phycisphaerae, and Kiritimatiellales to Hg methylation, stratified in different redox niches along the Black Sea gradient. Our results considerably expand the known taxonomic diversity and ecological niches prone to the formation of MeHg and contribute to better apprehend the consequences of oxygen depletion in seawater.
  •  
2.
  • Capo, Eric, et al. (författare)
  • A consensus protocol for the recovery of mercury methylation genes from metagenomes
  • 2023
  • Ingår i: Molecular Ecology Resources. - : John Wiley & Sons. - 1755-098X .- 1755-0998. ; 23:1, s. 190-204
  • Tidskriftsartikel (refereegranskat)abstract
    • Mercury (Hg) methylation genes (hgcAB) mediate the formation of the toxic methylmercury and have been identified from diverse environments, including freshwater and marine ecosystems, Arctic permafrost, forest and paddy soils, coal-ash amended sediments, chlor-alkali plants discharges and geothermal springs. Here we present the first attempt at a standardized protocol for the detection, identification and quantification of hgc genes from metagenomes. Our Hg-cycling microorganisms in aquatic and terrestrial ecosystems (Hg-MATE) database, a catalogue of hgc genes, provides the most accurate information to date on the taxonomic identity and functional/metabolic attributes of microorganisms responsible for Hg methylation in the environment. Furthermore, we introduce "marky-coco", a ready-to-use bioinformatic pipeline based on de novo single-metagenome assembly, for easy and accurate characterization of hgc genes from environmental samples. We compared the recovery of hgc genes from environmental metagenomes using the marky-coco pipeline with an approach based on coassembly of multiple metagenomes. Our data show similar efficiency in both approaches for most environments except those with high diversity (i.e., paddy soils) for which a coassembly approach was preferred. Finally, we discuss the definition of true hgc genes and methods to normalize hgc gene counts from metagenomes.
  •  
3.
  •  
4.
  • Williams, John W., et al. (författare)
  • Strengthening global-change science by integrating aeDNA with paleoecoinformatics
  • 2023
  • Ingår i: Trends in Ecology & Evolution. - : Elsevier. - 0169-5347 .- 1872-8383. ; 38:10, s. 946-960
  • Tidskriftsartikel (refereegranskat)abstract
    • Ancient environmental DNA (aeDNA) data are close to enabling insights into past global-scale biodiversity dynamics at unprecedented taxonomic extent and resolution. However, achieving this potential requires solutions that bridge bioinformatics and paleoecoinformatics. Essential needs include support for dynamic taxonomic inferences, dynamic age inferences, and precise stratigraphic depth. Moreover, aeDNA data are complex and heterogeneous, generated by dispersed researcher networks, with methods advancing rapidly. Hence, expert community governance and curation are essential to building high-value data resources. Immediate recommendations include uploading metabarcoding-based taxonomic inventories into paleoecoinformatic resources, building linkages among open bioinformatic and paleoecoinformatic data resources, harmonizing aeDNA processing workflows, and expanding community data governance. These advances will enable transformative insights into global-scale biodiversity dynamics during large environmental and anthropogenic changes.
  •  
5.
  • Barouillet, Cécilia, et al. (författare)
  • Investigating the effects of anthropogenic stressors on lake biota using sedimentary DNA
  • 2022
  • Ingår i: Freshwater Biology. - : John Wiley & Sons. - 0046-5070 .- 1365-2427. ; 68:11, s. 1799-1817
  • Tidskriftsartikel (refereegranskat)abstract
    • Analyses of sedimentary DNA (sedDNA) have increased exponentially over the last decade and hold great potential to study the effects of anthropogenic stressors on lake biota over time.Herein, we synthesise the literature that has applied a sedDNA approach to track historical changes in lake biodiversity in response to anthropogenic impacts, with an emphasis on the past c. 200 years.We identified the following research themes that are of particular relevance: (1) eutrophication and climate change as key drivers of limnetic communities; (2) increasing homogenisation of limnetic communities across large spatial scales; and (3) the dynamics and effects of invasive species as traced in lake sediment archives.Altogether, this review highlights the potential of sedDNA to draw a more comprehensive picture of the response of lake biota to anthropogenic stressors, opening up new avenues in the field of paleoecology by unrevealing a hidden historical biodiversity, building new paleo-indicators, and reflecting either taxonomic or functional attributes.Broadly, sedDNA analyses provide new perspectives that can inform ecosystem management, conservation, and restoration by offering an approach to measure ecological integrity and vulnerability, as well as ecosystem functioning.
  •  
6.
  • Capo, Eric, et al. (författare)
  • Anaerobic mercury methylators inhabit sinking particles of oxic water columns
  • 2023
  • Ingår i: Water Research. - : Elsevier. - 0043-1354 .- 1879-2448. ; 229
  • Tidskriftsartikel (refereegranskat)abstract
    • Increased concentration of mercury, particularly methylmercury, in the environment is a worldwide concern because of its toxicity in severely exposed humans. Although the formation of methylmercury in oxic water columns has been previously suggested, there is no evidence of the presence of microorganisms able to perform this process, using the hgcAB gene pair (hgc+ microorganisms), in such environments. Here we show the prevalence of hgc+ microorganisms in sinking particles of the oxic water column of Lake Geneva (Switzerland and France) and its anoxic bottom sediments. Compared to anoxic sediments, sinking particles found in oxic waters exhibited relatively high proportion of hgc+genes taxonomically assigned to Firmicutes. In contrast hgc+members from Nitrospirae, Chloroflexota and PVC superphylum were prevalent in anoxic sediment while hgc+ Desulfobacterota were found in both environments. Altogether, the description of the diversity of putative mercury methylators in the oxic water column expand our understanding on MeHg formation in aquatic environments and at a global scale.
  •  
7.
  • Capo, Eric, et al. (författare)
  • Deltaproteobacteria andSpirochaetes-Like Bacteria AreAbundant Putative MercuryMethylators in Oxygen-DeficientWater and Marine Particles in theBaltic Sea
  • 2020
  • Ingår i: Frontiers in Microbiology. - : Frontiers Media SA. - 1664-302X. ; , s. 1-11
  • Tidskriftsartikel (refereegranskat)abstract
    • Methylmercury (MeHg), a neurotoxic compound biomagnifying in aquatic food webs, can be a threat to human health via fish consumption. However, the compositionand distribution of the microbial communities mediating the methylation of mercury (Hg) to MeHg in marine systems remain largely unknown. In order to fill this knowledge gap, we used the Baltic Sea Reference Metagenome (BARM) dataset to study the abundance and distribution of the genes involved in Hg methylation (the hgcAB gene cluster). We determined the relative abundance of the hgcAB genes and their taxonomic identity in 81 brackish metagenomes that cover spatial,seasonal and redox variability in the Baltic Sea water column. The hgcAB genes were predominantly detected in anoxic water, but some hgcAB genes were alsodetected in hypoxic and normoxic waters. Phylogenetic analysis identified putative Hg methylators within Deltaproteobacteria, in oxygen-deficient water layers, but also Spirochaetes-like and Kiritimatiellaeota-like bacteria. Higher relative quantities of hgcAB genes were found in metagenomes from marine particles compared to free-living communities in anoxic water, suggesting that such particles are hotspot habitats for Hg methylators in oxygen-depleted seawater. Altogether, our work unveils the diversityof the microorganisms with the potential to mediate MeHg production in the BalticSea and pinpoint the important ecological niches for these microorganisms within themarine water column.
  •  
8.
  • Capo, Eric, et al. (författare)
  • Droplet digital PCR applied to environmental DNA, a promising method to estimate fish population abundance from humic-rich aquatic ecosystems
  • 2021
  • Ingår i: Environmental DNA. - : John Wiley & Sons. - 2637-4943. ; 3:2, s. 343-352
  • Tidskriftsartikel (refereegranskat)abstract
    • Measures of environmental DNA (eDNA) concentrations in water samples have the potential to be both a cost-efficient and a nondestructive method to estimate fish population abundance. However, the inherent temporal and spatial variability in abiotic and biotic conditions in aquatic systems have been suggested to be a major obstacle to determine relationships between fish eDNA concentrations and fish population abundance. Moreover, once water samples are collected, methodological biases are common, which introduces additional sources of variation to potential relationships between eDNA concentrations and fish population abundance. Here, we evaluate the performance of applying the droplet digital PCR (ddPCR) method to estimate fish population abundance in experimental enclosures. Using large-scale enclosure ecosystems that contain populations of nine-spined stickleback (Pungitius pungitius), we compared the concentrations of fish eDNA (COI mitochondrial region, 134 bp) obtained with the ddPCR method with high precision estimates of fish population abundance (i.e., number of individuals) and biomass. To evaluate the effects of contrasted concentrations of humic substances (potential PCR inhibitors) on the performance of ddPCR assays, we manipulated natural dissolved organic carbon (DOC) concentrations (range 4–11 mg/L) in the enclosures. Additionally, water temperature (+2°C) was manipulated in half of the enclosures. Results showed positive relationships between eDNA concentration and fish abundance and biomass estimates although unexplained variation remained. Still and importantly, fish eDNA estimates from high DOC enclosures were not lowered by potential inhibitory effects with our procedure. Finally, water temperature (although only 2°C difference) was neither detected as a significant factor influencing fish eDNA estimates. Altogether, our work highlights that ddPCR-based eDNA is a promising method for future quantification of fish population abundance in natural systems.
  •  
9.
  • Capo, Eric, et al. (författare)
  • Droplet digital PCR assays for the quantification of brown trout (Salmo trutta) and Arctic char (Salvelinus alpinus) from environmental DNA collected in the water of mountain lakes
  • 2019
  • Ingår i: PLOS ONE. - : Public Library of Science. - 1932-6203. ; 14:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Classical methods for estimating the abundance of fish populations are often both expensive, time-consuming and destructive. Analyses of the environmental DNA (eDNA) present in water samples could alleviate such constraints. Here, we developed protocols to detect and quantify brown trout (Salmo trutta) and Arctic char (Salvelinus alpinus) populations by applying the droplet digital PCR (ddPCR) method to eDNA molecules extracted from water samples collected in 28 Swedish mountain lakes. Overall, contemporary fish CPUE (catch per unit effort) estimates from standardized survey gill nettings were not correlated to eDNA concentrations for either of the species. In addition, the measured environmental variables (e.g. dissolved organic carbon concentrations, temperature, and pH) appear to not influence water eDNA concentrations of the studied fish species. Detection probabilities via eDNA analysis showed moderate success (less than 70% for both species) while the presence of eDNA from Arctic char (in six lakes) and brown trout (in one lake) was also indicated in lakes where the species were not detected with the gillnetting method. Such findings highlight the limits of one or both methods to reliably detect fish species presence in natural systems. Additional analysis showed that the filtration of water samples through 1.2 mu m glass fiber filters and 0.45 mu m mixed cellulose ester filters was more efficient in recovering DNA than using 0.22 mu m enclosed polyethersulfone filters, probably due to differential efficiencies of DNA extraction. Altogether, this work showed the potentials and limits of the approach for the detection and the quantification of fish abundance in natural systems while providing new insights in the application of the ddPCR method applied to environmental DNA.
  •  
10.
  • Capo, Eric, et al. (författare)
  • Effects of filtration methods and water volume on the quantification of brown trout (Salmo trutta) and Arctic char (Salvelinus alpinus) eDNA concentrations via droplet digital PCR
  • 2020
  • Ingår i: Environmental DNA. - : John Wiley & Sons. - 2637-4943. ; 2:2, s. 152-160
  • Tidskriftsartikel (refereegranskat)abstract
    • The quantification of the abundance of aquatic organisms via the use of environmental DNA (eDNA) molecules present in water is potentially a useful tool for efficient and noninvasive population monitoring. However, questions remain about the reliability of molecular methods. Among the factors that can hamper the reliability of the eDNA quantification, we investigated the influence of five filtration methods (filter pore size, filter type) and filtered water volume (1 and 2 L) on the total eDNA and the fish eDNA concentrations of two species, brown trout (Salmo trutta) and Arctic char (Salvelinus alpinus) from tanks with known number of individuals and biomass. We applied a droplet digital PCR (ddPCR) approach to DNA extracted from water samples collected from two cultivation tanks (each of them containing one of the targeted species). Results showed that the quantification of fish eDNA concentrations of both species varies with filtration methods. More specifically, the 0.45-µm Sterivex enclosed filters were identified to recover the highest eDNA concentrations. Difficulties to filter 2 L water samples were present for small pore size filters (≤0.45 µm) and likely caused by filter clogging. To overcome issues related to filter clogging, common in studies aiming to quantify fish eDNA molecules from water samples, we recommend a procedure involving filtration of multiple 1 L water samples with 0.45-µm enclosed filters, to recover both high quality and high concentrations of eDNA from targeted species, and subsequent processing of independent DNA extracts with the ddPCR method.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 37
Typ av publikation
tidskriftsartikel (29)
annan publikation (3)
forskningsöversikt (2)
samlingsverk (redaktörskap) (1)
doktorsavhandling (1)
bokkapitel (1)
visa fler...
visa färre...
Typ av innehåll
refereegranskat (33)
övrigt vetenskapligt/konstnärligt (4)
Författare/redaktör
Capo, Eric (36)
Bertilsson, Stefan (11)
Pinhassi, Jarone (6)
Bravo, Andrea G. (6)
Björn, Erik (5)
Domaizon, Isabelle (5)
visa fler...
Bigler, Christian (4)
An, Zhisheng (4)
Buck, Moritz (4)
Olajos, Fredrik (4)
Soerensen, Anne L. (3)
Bindler, Richard, 19 ... (3)
Mcgowan, Suzanne (3)
Byström, Pär (3)
Spong, Göran (3)
Epp, Laura S. (3)
Ibrahim, Anan (3)
Picard, Maïlys (3)
Rydberg, Johan, 1976 ... (3)
Königsson, Helena (3)
Debroas, Didier (3)
Ficetola, Gentile Fr ... (3)
Monchamp, Marie-Eve (3)
Zhang, Ke (3)
Andersson, Agneta (2)
Legrand, Catherine, ... (2)
Farnelid, Hanna, 198 ... (2)
Parducci, Laura, 196 ... (2)
Lindehoff, Elin (2)
Kjær, Kurt H. (2)
Rouillard, Alexandra (2)
Figueroa, Daniela, 1 ... (2)
Zhao, Xue (2)
Englund, Göran (2)
Barouillet, Cécilia (2)
Wood, Susanna A. (2)
Herzschuh, Ulrike (2)
Nota, Kevin (2)
Arnaud, Fabien (2)
Cosio, Claudia (2)
Acinas, Silvia G. (2)
Sanchez, Pablo (2)
Walsh, David A. (2)
Vandewalle-Capo, Mar ... (2)
Feng, Caiyan (2)
Giguet-Covex, Charli ... (2)
Gregory-Eaves, Irene (2)
Stoof-Leichsenring, ... (2)
Wang, Yucheng (2)
Coolen, Marco J. L. (2)
visa färre...
Lärosäte
Umeå universitet (36)
Sveriges Lantbruksuniversitet (10)
Linnéuniversitetet (7)
Uppsala universitet (3)
Naturhistoriska riksmuseet (3)
Stockholms universitet (2)
visa fler...
Göteborgs universitet (1)
Kungliga Tekniska Högskolan (1)
visa färre...
Språk
Engelska (37)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (36)
Lantbruksvetenskap (2)
Medicin och hälsovetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy