SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Capotondi Flavio) "

Sökning: WFRF:(Capotondi Flavio)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Diesen, Elias, et al. (författare)
  • Ultrafast Adsorbate Excitation Probed with Subpicosecond-Resolution X-Ray Absorption Spectroscopy
  • 2021
  • Ingår i: Physical Review Letters. - 0031-9007 .- 1079-7114. ; 127:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We use a pump-probe scheme to measure the time evolution of the C K-edge x-ray absorption spectrum from CO/Ru(0001) after excitation by an ultrashort high-intensity optical laser pulse. Because of the short duration of the x-ray probe pulse and precise control of the pulse delay, the excitation-induced dynamics during the first picosecond after the pump can be resolved with unprecedented time resolution. By comparing with density functional theory spectrum calculations, we find high excitation of the internal stretch and frustrated rotation modes occurring within 200 fs of laser excitation, as well as thermalization of the system in the picosecond regime. The ∼100  fs initial excitation of these CO vibrational modes is not readily rationalized by traditional theories of nonadiabatic coupling of adsorbates to metal surfaces, e.g., electronic frictions based on first order electron-phonon coupling or transient population of adsorbate resonances. We suggest that coupling of the adsorbate to nonthermalized electron-hole pairs is responsible for the ultrafast initial excitation of the modes.
  •  
2.
  • Hennecke, Martin, et al. (författare)
  • Ultrafast opto-magnetic effects in the extreme ultraviolet spectral range
  • 2024
  • Ingår i: Communications Physics. - : Springer Nature. - 2399-3650. ; 7:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Coherent light-matter interactions mediated by opto-magnetic phenomena like the inverse Faraday effect (IFE) are expected to provide a non-thermal pathway for ultrafast manipulation of magnetism on timescales as short as the excitation pulse itself. As the IFE scales with the spin-orbit coupling strength of the involved electronic states, photo-exciting the strongly spin-orbit coupled core-level electrons in magnetic materials appears as an appealing method to transiently generate large opto-magnetic moments. Here, we investigate this scenario in a ferrimagnetic GdFeCo alloy by using intense and circularly polarized pulses of extreme ultraviolet radiation. Our results reveal ultrafast and strong helicity-dependent magnetic effects which are in line with the characteristic fingerprints of an IFE, corroborated by ab initio opto-magnetic IFE theory and atomistic spin dynamics simulations.
  •  
3.
  • Jangid, Rahul, et al. (författare)
  • Extreme Domain Wall Speeds under Ultrafast Optical Excitation
  • 2023
  • Ingår i: Physical Review Letters. - 0031-9007 .- 1079-7114. ; 131:25
  • Tidskriftsartikel (refereegranskat)abstract
    • Time-resolved ultrafast EUV magnetic scattering was used to test a recent prediction of > 10 km/s domain wall speeds by optically exciting a magnetic sample with a nanoscale labyrinthine domain pattern. Ultrafast distortion of the diffraction pattern was observed at markedly different timescales compared to the magnetization quenching. The diffraction pattern distortion shows a threshold dependence with laser fluence, not seen for magnetization quenching, consistent with a picture of domain wall motion with pinning sites. Supported by simulations, we show that a speed of approximate to 66 km/s for highly curved domain walls can explain the experimental data. While our data agree with the prediction of extreme, nonequilibrium wall speeds locally, it differs from the details of the theory, suggesting that additional mechanisms are required to fully understand these effects.
  •  
4.
  • Ksenzov, Dmitriy, et al. (författare)
  • Nanoscale Transient Magnetization Gratings Created and Probed by Femtosecond Extreme Ultraviolet Pulses
  • 2021
  • Ingår i: Nano Letters. - : American Chemical Society (ACS). - 1530-6984 .- 1530-6992. ; 21:7, s. 2905-2911
  • Tidskriftsartikel (refereegranskat)abstract
    • We utilize coherent femtosecond extreme ultraviolet (EUV) pulses from a free electron laser (FEL) to generate transient periodic magnetization patterns with periods as short as 44 nm. Combining spatially periodic excitation with resonant probing at the M-edge of cobalt allows us to create and probe transient gratings of electronic and magnetic excitations in a CoGd alloy. In a demagnetized sample, we observe an electronic excitation with a rise time close to the FEL pulse duration and similar to 0.5 ps decay time indicative of electron-phonon relaxation. When the sample is magnetized to saturation in an external field, we observe a magnetization grating, which appears on a subpicosecond time scale as the sample is demagnetized at the maxima of the EUV intensity and then decays on the time scale of tens of picoseconds via thermal diffusion. The described approach opens multiple avenues for studying dynamics of ultrafast magnetic phenomena on nanometer length scales.
  •  
5.
  • LaRue, Jerry, et al. (författare)
  • Symmetry-resolved CO desorption and oxidation dynamics on O/Ru(0001) probed at the C K-edge by ultrafast x-ray spectroscopy
  • 2022
  • Ingår i: Journal of Chemical Physics. - : AIP Publishing. - 0021-9606 .- 1089-7690. ; 157:16
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on carbon monoxide desorption and oxidation induced by 400 nm femtosecond laser excitation on the O/Ru(0001) surface probed by time-resolved x-ray absorption spectroscopy (TR-XAS) at the carbon K-edge. The experiments were performed under constant background pressures of CO (6 × 10−8 Torr) and O2 (3 × 10−8 Torr). Under these conditions, we detect two transient CO species with narrow 2π* peaks, suggesting little 2π* interaction with the surface. Based on polarization measurements, we find that these two species have opposing orientations: (1) CO favoring a more perpendicular orientation and (2) CO favoring a more parallel orientation with respect to the surface. We also directly detect gas-phase CO2 using a mass spectrometer and observe weak signatures of bent adsorbed CO2 at slightly higher x-ray energies than the 2π* region. These results are compared to previously reported TR-XAS results at the O K-edge, where the CO background pressure was three times lower (2 × 10−8 Torr) while maintaining the same O2 pressure. At the lower CO pressure, in the CO 2π* region, we observed adsorbed CO and a distribution of OC–O bond lengths close to the CO oxidation transition state, with little indication of gas-like CO. The shift toward “gas-like” CO species may be explained by the higher CO exposure, which blocks O adsorption, decreasing O coverage and increasing CO coverage. These effects decrease the CO desorption barrier through dipole–dipole interaction while simultaneously increasing the CO oxidation barrier.
  •  
6.
  • Pedersoli, Emanuele, et al. (författare)
  • Multipurpose modular experimental station for the DiProI beamline of Fermi@Elettra free electron laser
  • 2011
  • Ingår i: Review of Scientific Instruments. - : AIP Publishing. - 0034-6748 .- 1089-7623. ; 82:4, s. 043711-
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a compact modular apparatus with a flexible design that will be operated at the DiProI beamline of the Fermi@Elettra free electron laser (FEL) for performing static and time-resolved coherent diffraction imaging experiments, taking advantage of the full coherence and variable polarization of the short seeded FEL pulses. The apparatus has been assembled and the potential of the experimental setup is demonstrated by commissioning tests with coherent synchrotron radiation. This multipurpose experimental station will be open to general users after installation at the Fermi@Elettra free electron laser in 2011.
  •  
7.
  • Pietrini, Alberto (författare)
  • Statistical processing of Flash X-ray Imaging of protein complexes
  • 2019
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Flash X-ray Imaging (FXI) at X-ray Free Electron Lasers (XFELs) is a promising technique that permits the investigation of the 3D structure of molecules without the need for crystallization, by diffracting on single individual sample particles.In the past few years, some success has been achieved by using FXI on quite large biological complexes (40 nm-1 μm in diameter size). Still, the desired dream-goal of imaging a single individual of a molecule or a protein complex (<15 nm in diameter size) has not been reached yet. The main issue that prevented us from a complete success has been the low signal strength, almost comparable to background noise. That is particularly true for experiments performed at the Coherent X-ray Imaging (CXI) instrument at the Linac Coherent Light Source (LCLS).In this thesis, we provide a brief review of the CXI instrument (focusing on experiments there performed) and present a statistical method to deal with low signal-to-noise ratios. We take into account a variety of biological particles, showing the benefits of estimating a background model from sample data and using that for processing said data. Moreover, we present the results of some computer simulations in order to explore the limits and potentials of the proposed approach.Last, we show another method (named COACS) that, being fed with the previous findings from the background model, helps obtaining clearer results in the phase retrieval problem.
  •  
8.
  • Sala, Simone, et al. (författare)
  • Pulse-to-pulse wavefront sensing at free-electron lasers using ptychography
  • 2020
  • Ingår i: Journal of applied crystallography. - : INT UNION CRYSTALLOGRAPHY. - 0021-8898 .- 1600-5767. ; 53, s. 949-956
  • Tidskriftsartikel (refereegranskat)abstract
    • The pressing need for knowledge of the detailed wavefront properties of ultra-bright and ultra-short pulses produced by free-electron lasers has spurred the development of several complementary characterization approaches. Here a method based on ptychography is presented that can retrieve high-resolution complex-valued wavefunctions of individual pulses without strong constraints on the illumination or sample object used. The technique is demonstrated within experimental conditions suited for diffraction experiments and exploiting Kirkpatrick-Baez focusing optics. This lensless technique, applicable to many other short-pulse instruments, can achieve diffraction-limited resolution.
  •  
9.
  • Schreck, Simon, et al. (författare)
  • Atom-Specific Probing of Electron Dynamics in an Atomic Adsorbate by Time-Resolved X-Ray Spectroscopy
  • 2022
  • Ingår i: Physical Review Letters. - 0031-9007 .- 1079-7114. ; 129:27
  • Tidskriftsartikel (refereegranskat)abstract
    • The electronic excitation occurring on adsorbates at ultrafast timescales from optical lasers that initiate surface chemical reactions is still an open question. Here, we report the ultrafast temporal evolution of x-ray absorption spectroscopy (XAS) and x-ray emission spectroscopy (XES) of a simple well-known adsorbate prototype system, namely carbon (C) atoms adsorbed on a nickel [Ni(100)] surface, following intense laser optical pumping at 400 nm. We observe ultrafast (∼100  fs) changes in both XAS and XES showing clear signatures of the formation of a hot electron-hole pair distribution on the adsorbate. This is followed by slower changes on a few picoseconds timescale, shown to be consistent with thermalization of the complete C/Ni system. Density functional theory spectrum simulations support this interpretation.
  •  
10.
  • Wang, Hsin-Yi, et al. (författare)
  • Time-resolved observation of transient precursor state of CO on Ru(0001) using carbon K-edge spectroscopy
  • 2020
  • Ingår i: Physical Chemistry, Chemical Physics - PCCP. - 1463-9076 .- 1463-9084. ; 22:5, s. 2677-2684
  • Tidskriftsartikel (refereegranskat)abstract
    • The transient dynamics of carbon monoxide (CO) molecules on a Ru(0001) surface following femtosecond optical laser pump excitation has been studied by monitoring changes in the unoccupied electronic structure using an ultrafast X-ray free-electron laser (FEL) probe. The particular symmetry of perpendicularly chemisorbed CO on the surface is exploited to investigate how the molecular orientation changes with time by varying the polarization of the FEL pulses. The time evolution of spectral features corresponding to the desorption precursor state was well distinguished due to the narrow line-width of the C K-edge in the X-ray absorption (XA) spectrum, illustrating that CO molecules in the precursor state rotated freely and resided on the surface for several picoseconds. Most of the CO molecules trapped in the precursor state ultimately cooled back down to the chemisorbed state, while we estimate that ∼14.5 ± 4.9% of the molecules in the precursor state desorbed into the gas phase. It was also observed that chemisorbed CO molecules diffused over the metal surface from on-top sites toward highly coordinated sites. In addition, a new “vibrationally hot precursor” state was identified in the polarization-dependent XA spectra.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy