SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Cappelaere Bernard) "

Sökning: WFRF:(Cappelaere Bernard)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abdi, Abdulhakim, et al. (författare)
  • Evaluating Water Controls on Vegetation Growth in the Semi-Arid Sahel Using Field and Earth Observation Data
  • 2017
  • Ingår i: Remote Sensing. - : MDPI AG. - 2072-4292. ; 9:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Water loss is a crucial factor for vegetation in the semi-arid Sahel region of Africa. Global satellite-driven estimates of plant CO2 uptake (gross primary productivity, GPP) have been found to not accurately account for Sahelian conditions, particularly the impact of canopy water stress. Here, we identify the main biophysical limitations that induce canopy water stress in Sahelian vegetation and evaluate the relationships between field data and Earth observation-derived spectral products for up-scaling GPP. We find that plant-available water and vapor pressure deficit together control the GPP of Sahelian vegetation through their impact on the greening and browning phases. Our results show that a multiple linear regression (MLR) GPP model that combines the enhanced vegetation index, land surface temperature, and the short-wave infrared reflectance (Band 7, 2105–2155 nm) of the moderate-resolution imaging spectroradiometer satellite sensor was able to explain between 88% and 96% of the variability of eddy covariance flux tower GPP at three Sahelian sites (overall = 89%). The MLR GPP model presented here is potentially scalable at a relatively high spatial and temporal resolution. Given the scarcity of field data on CO2 fluxes in the Sahel, this scalability is important due to the low number of flux towers in the region.
  •  
2.
  • Pfeffer, Julia, et al. (författare)
  • Evaluating surface and subsurface water storage variations at small time and space scales from relative gravity measurements in semiarid Niger
  • 2013
  • Ingår i: Water Resources Research. - : American Geophysical Union (AGU). - 0043-1397 .- 1944-7973. ; 49:6, s. 3276-3291
  • Tidskriftsartikel (refereegranskat)abstract
    • The acquisition of reliable data sets representative of hydrological regimes and their variations is a critical concern for water resource assessment. For the subsurface, traditional approaches based on probe measurements, core analysis, and well data can be laborious, expensive, and highly intrusive, while only yielding sparse data sets. For this study, an innovative field survey, merging relative microgravimetry, magnetic resonance soundings, and hydrological measurements, was conducted to evaluate both surface and subsurface water storage variations in a semiarid Sahelian area. The instrumental setup was implemented in the lower part of a typical hillslope feeding to a temporary pond. Weekly measurements were carried out using relative spring gravimeters during 3 months of the rainy season in 2009 over a 350 × 500 m2 network of 12 microgravity stations. Gravity variations of small to medium amplitude (≤220 nm s-2) were measured with accuracies better than 50 nm s-2, revealing significant variations of the water storage at small time (from 1 week up to 3 months) and space (from a couple of meters up to a few hundred meters) scales. Consistent spatial organization of the water storage variations were detected, suggesting high infiltration at the outlet of a small gully. The comparison with hydrological measurements and magnetic resonance soundings involved that most of the microgravity variations came from the heterogeneity in the vadose zone. The results highlight the potential of time lapse microgravity surveys for detecting intraseasonal water storage variations and providing rich space-time data sets for process investigation or hydrological model calibration/ evaluation.
  •  
3.
  • Rahimi, Jaber, et al. (författare)
  • Modeling gas exchange and biomass production in West African Sahelian and Sudanian ecological zones
  • 2021
  • Ingår i: Geoscientific Model Development. - : Copernicus GmbH. - 1991-959X .- 1991-9603. ; 14:6, s. 3789-3812
  • Tidskriftsartikel (refereegranskat)abstract
    • West African Sahelian and Sudanian ecosystems provide essential services to people and also play a significant role within the global carbon cycle. However, climate and land use are dynamically changing, and uncertainty remains with respect to how these changes will affect the potential of these regions to provide food and fodder resources or how they will affect the biosphere-atmosphere exchange of CO2. In this study, we investigate the capacity of a process-based biogeochemical model, LandscapeDNDC, to simulate net ecosystem exchange (NEE) and aboveground biomass of typical managed and natural Sahelian and Sudanian savanna ecosystems. In order to improve the simulation of phenology, we introduced soil-water availability as a common driver of foliage development and productivity for all of these systems. The new approach was tested by using a sample of sites (calibration sites) that provided NEE from flux tower observations as well as leaf area index data from satellite images (MODIS, MODerate resolution Imaging Spectroradiometer). For assessing the simulation accuracy, we applied the calibrated model to 42 additional sites (validation sites) across West Africa for which measured aboveground biomass data were available. The model showed good performance regarding biomass of crops, grass, or trees, yielding correlation coefficients of 0.82, 0.94, and 0.77 and root-mean-square errors of 0.15, 0.22, and 0.12gkggm-2, respectively. The simulations indicate aboveground carbon stocks of up to 0.17, 0.33, and 0.54gkggCgha-1gm-2 for agricultural, savanna grasslands, and savanna mixed tree-grassland sites, respectively. Carbon stocks and exchange rates were particularly correlated with the abundance of trees, and grass biomass and crop yields were higher under more humid climatic conditions. Our study shows the capability of LandscapeDNDC to accurately simulate carbon balances in natural and agricultural ecosystems in semiarid West Africa under a wide range of conditions; thus, the model could be used to assess the impact of land-use and climate change on the regional biomass productivity.
  •  
4.
  • Tagesson, Torbern, et al. (författare)
  • Modelling spatial and temporal dynamics of gross primary production in the Sahel from earth-observation-based photosynthetic capacity and quantum efficiency
  • 2017
  • Ingår i: Biogeosciences. - : Copernicus GmbH. - 1726-4189. ; 14:5, s. 1333-1348
  • Tidskriftsartikel (refereegranskat)abstract
    • It has been shown that vegetation growth in semi-arid regions is important to the global terrestrial CO2 sink, which indicates the strong need for improved understanding and spatially explicit estimates of CO2 uptake (gross primary production; GPP) in semi-arid ecosystems. This study has three aims: (1) to evaluate the MOD17A2H GPP (collection 6) product against GPP based on eddy covariance (EC) for six sites across the Sahel; (2) to characterize relationships between spatial and temporal variability in EC-based photosynthetic capacity (Fopt) and quantum efficiency (α) and vegetation indices based on earth observation (EO) (normalized difference vegetation index (NDVI), renormalized difference vegetation index (RDVI), enhanced vegetation index (EVI) and shortwave infrared water stress index (SIWSI)); and (3) to study the applicability of EO upscaled Fopt and α for GPP modelling purposes. MOD17A2H GPP (collection 6) drastically underestimated GPP, most likely because maximum light use efficiency is set too low for semi-arid ecosystems in the MODIS algorithm. Intra-annual dynamics in Fopt were closely related to SIWSI being sensitive to equivalent water thickness, whereas α was closely related to RDVI being affected by chlorophyll abundance. Spatial and inter-annual dynamics in Fopt and α were closely coupled to NDVI and RDVI, respectively. Modelled GPP based on Fopt and α upscaled using EO-based indices reproduced in situ GPP well for all except a cropped site that was strongly impacted by anthropogenic land use. Upscaled GPP for the Sahel 2001–2014 was 736 ± 39 g C m−2 yr−1. This study indicates the strong applicability of EO as a tool for spatially explicit estimates of GPP, Fopt and α; incorporating EO-based Fopt and α in dynamic global vegetation models could improve estimates of vegetation production and simulations of ecosystem processes and hydro-biochemical cycles.
  •  
5.
  • Tagesson, Torbern, et al. (författare)
  • Spatiotemporal variability in carbon exchange fluxes across the Sahel
  • 2016
  • Ingår i: Agricultural and Forest Meteorology. - : Elsevier BV. - 0168-1923. ; 226-227, s. 108-118
  • Tidskriftsartikel (refereegranskat)abstract
    • Semi-arid regions play an increasingly important role as a sink within the global carbon (C) cycle and is the main biome driving inter-annual variability in carbon dioxide (CO2) uptake by terrestrial ecosystems. This indicates the need for detailed studies of spatiotemporal variability in C cycling for semi-arid ecosystems. We have synthesized data on the land-atmosphere exchange of CO2 measured with the eddy covariance technique from the six existing sites across the Sahel, one of the largest semi-arid regions in the world. The overall aim of the study is to analyse and quantify the spatiotemporal variability in these fluxes and to analyse to which degree spatiotemporal variation can be explained by hydrological, climatic, edaphic and vegetation variables. All ecosystems were C sinks (average ± total error -162 ± 48 g C m-2 y-1), but were smaller when strongly impacted by anthropogenic influences. Spatial and inter-annual variability in the C flux processes indicated a strong resilience to dry conditions, and were correlated with phenological metrics. Gross primary productivity (GPP) was the most important flux process affecting the sink strength, and diurnal variability in GPP was regulated by incoming radiation, whereas seasonal dynamics was closely coupled with phenology, and soil water content. Diurnal variability in ecosystem respiration was regulated by GPP, whereas seasonal variability was strongly coupled to phenology and GPP. A budget for the entire Sahel indicated a strong C sink mitigating the global anthropogenic C emissions. Global circulation models project an increase in temperature, whereas rainfall is projected to decrease for western Sahel and increase for the eastern part, indicating that the C sink will possibly decrease and increase for the western and eastern Sahel, respectively.
  •  
6.
  • Verbruggen, Wim, et al. (författare)
  • Contrasting responses of woody and herbaceous vegetation to altered rainfall characteristics in the Sahel
  • 2021
  • Ingår i: Biogeosciences. - : Copernicus GmbH. - 1726-4170 .- 1726-4189. ; 18:1, s. 77-93
  • Tidskriftsartikel (refereegranskat)abstract
    • Dryland ecosystems are a major source of land cover, account for about 40% of Earth's terrestrial surface and net primary productivity, and house more than 30% of the human population. These ecosystems are subject to climate extremes (e.g. large-scale droughts and extreme floods) that are projected to increase in frequency and severity under most future climate scenarios. In this modelling study we assessed the impact of single years of extreme (high or low) rainfall on dryland vegetation in the Sahel. The magnitude and legacy of these impacts were quantified on both the plant functional type and the ecosystem levels. In order to understand the impact of differences in the rainfall distribution over the year, these rainfall anomalies were driven by changing either rainfall intensity, event frequency or rainy-season length. The Lund-Potsdam-Jena General Ecosystem Simulator (LPJ-GUESS) dynamic vegetation model was parameterized to represent dryland plant functional types (PFTs) and was validated against flux tower measurements across the Sahel. Different scenarios of extreme rainfall were derived from existing Sahel rainfall products and applied during a single year of the model simulation timeline. Herbaceous vegetation responded immediately to the different scenarios, while woody vegetation had a weaker and slower response, integrating precipitation changes over a longer timeframe. An increased season length had a larger impact than increased intensity or frequency, while impacts of decreased rainfall scenarios were strong and independent of the season characteristics. Soil control on surface water balance explains these contrasts between the scenarios. None of the applied disturbances caused a permanent vegetation shift in the simulations. Dryland ecosystems are known to play a dominant role in the trend and variability of the global terrestrial CO2 sink. We showed that single extremely dry and wet years can have a strong impact on the productivity of drylands ecosystems, which typically lasts an order of magnitude longer than the duration of the disturbance. Therefore, this study sheds new light on potential drivers and mechanisms behind this variability.
  •  
7.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy