SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Carja Oana) "

Sökning: WFRF:(Carja Oana)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Mahdessian, Diana, et al. (författare)
  • Spatiotemporal dissection of the cell cycle regulated human proteome
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Here we present a spatiotemporal dissection of proteome single cell heterogeneity in human cells, performed with subcellular resolution over the course of a cell cycle. We identify 17% of the human proteome to display cell-to-cell variability, of which we could attribute 25% as correlated to cell cycle progression, and present the first evidence of cell cycle association for 258 proteins. A key finding is that the variance, of many of the cell cycle associated proteins, is only partially explained by the cell cycle, which hints at cross-talk between the cell cycle and other signaling pathways. We also demonstrate that several of the identified cell cycle regulated proteins may be clinically significant in proliferative disorders. This spatially resolved proteome map of the cell cycle, integrated into the Human Protein Atlas, serves as a valuable resource to accelerate the molecular knowledge of the cell cycle and opens up novel avenues for the understanding of cell proliferation.
  •  
2.
  • Mahdessian, Diana, et al. (författare)
  • Spatiotemporal dissection of the cell cycle with single-cell proteogenomics
  • 2021
  • Ingår i: Nature. - : Springer Nature. - 0028-0836 .- 1476-4687. ; 590:7847
  • Tidskriftsartikel (refereegranskat)abstract
    • Spatial and temporal variations among individual human cell proteomes are comprehensively mapped across the cell cycle using proteomic imaging and transcriptomics. The cell cycle, over which cells grow and divide, is a fundamental process of life. Its dysregulation has devastating consequences, including cancer(1-3). The cell cycle is driven by precise regulation of proteins in time and space, which creates variability between individual proliferating cells. To our knowledge, no systematic investigations of such cell-to-cell proteomic variability exist. Here we present a comprehensive, spatiotemporal map of human proteomic heterogeneity by integrating proteomics at subcellular resolution with single-cell transcriptomics and precise temporal measurements of individual cells in the cell cycle. We show that around one-fifth of the human proteome displays cell-to-cell variability, identify hundreds of proteins with previously unknown associations with mitosis and the cell cycle, and provide evidence that several of these proteins have oncogenic functions. Our results show that cell cycle progression explains less than half of all cell-to-cell variability, and that most cycling proteins are regulated post-translationally, rather than by transcriptomic cycling. These proteins are disproportionately phosphorylated by kinases that regulate cell fate, whereas non-cycling proteins that vary between cells are more likely to be modified by kinases that regulate metabolism. This spatially resolved proteomic map of the cell cycle is integrated into the Human Protein Atlas and will serve as a resource for accelerating molecular studies of the human cell cycle and cell proliferation.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy