SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Carlert Sara) "

Sökning: WFRF:(Carlert Sara)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ahmad, Amais, et al. (författare)
  • IMI – Oral biopharmaceutics tools project – Evaluation of bottom-up PBPK prediction success part 4 : Prediction accuracy and software comparisons with improved data and modelling strategies
  • 2020
  • Ingår i: European journal of pharmaceutics and biopharmaceutics. - : Elsevier BV. - 0939-6411 .- 1873-3441. ; 156, s. 50-63
  • Tidskriftsartikel (refereegranskat)abstract
    • Oral drug absorption is a complex process depending on many factors, including the physicochemical properties of the drug, formulation characteristics and their interplay with gastrointestinal physiology and biology. Physiological-based pharmacokinetic (PBPK) models integrate all available information on gastro-intestinal system with drug and formulation data to predict oral drug absorption. The latter together with in vitro-in vivo extrapolation and other preclinical data on drug disposition can be used to predict plasma concentration-time profiles in silico. Despite recent successes of PBPK in many areas of drug development, an improvement in their utility for evaluating oral absorption is much needed. Current status of predictive performance, within the confinement of commonly available in vitro data on drugs and formulations alongside systems information, were tested using 3 PBPK software packages (GI-Sim (ver.4.1), Simcyp® Simulator (ver.15.0.86.0), and GastroPlusTM (ver.9.0.00xx)). This was part of the Innovative Medicines Initiative (IMI) Oral Biopharmaceutics Tools (OrBiTo) project.Fifty eight active pharmaceutical ingredients (APIs) were qualified from the OrBiTo database to be part of the investigation based on a priori set criteria on availability of minimum necessary information to allow modelling exercise. The set entailed over 200 human clinical studies with over 700 study arms. These were simulated using input parameters which had been harmonised by a panel of experts across different software packages prior to conduct of any simulation. Overall prediction performance and software packages comparison were evaluated based on performance indicators (Fold error (FE), Average fold error (AFE) and absolute average fold error (AAFE)) of pharmacokinetic (PK) parameters.On average, PK parameters (Area Under the Concentration-time curve (AUC0-tlast), Maximal concentration (Cmax), half-life (t1/2)) were predicted with AFE values between 1.11 and 1.97. Variability in FEs of these PK parameters was relatively high with AAFE values ranging from 2.08 to 2.74. Around half of the simulations were within the 2-fold error for AUC0-tlast and around 90% of the simulations were within 10-fold error for AUC0-tlast. Oral bioavailability (Foral) predictions, which were limited to 19 APIs having intravenous (i.v.) human data, showed AFE and AAFE of values 1.37 and 1.75 respectively. Across different APIs, AFE of AUC0-tlast predictions were between 0.22 and 22.76 with 70% of the APIs showing an AFE > 1. When compared across different formulations and routes of administration, AUC0-tlast for oral controlled release and i.v. administration were better predicted than that for oral immediate release formulations. Average predictive performance did not clearly differ between software packages but some APIs showed a high level of variability in predictive performance across different software packages. This variability could be related to several factors such as compound specific properties, the quality and availability of information, and errors in scaling from in vitro and preclinical in vivo data to human in vivo behaviour which will be explored further. Results were compared with previous similar exercise when the input data selection was carried by the modeller rather than a panel of experts on each in vitro test. Overall, average predictive performance was increased as reflected in smaller AAFE value of 2.8 as compared to AAFE value of 3.8 in case of previous exercise.
  •  
2.
  • Carlert, Sara, et al. (författare)
  • Evaluation of the use of Classical Nucleation Theory for predicting intestinal crystalline precipitation of two weakly basic BSC class II drugs
  • 2014
  • Ingår i: European Journal of Pharmaceutical Sciences. - : Elsevier BV. - 0928-0987 .- 1879-0720. ; 53, s. 17-27
  • Tidskriftsartikel (refereegranskat)abstract
    • The aim of this work was to evaluate an in vitro-in silico approach for prediction of small intestinal crystalline precipitation and drug absorption of two weakly basic model BCS class II drugs, AZD0865 and mebendazole. The crystallization rates were investigated in an in vitro method using simulated gastric and intestinal media, and the result was modeled by using Classical Nucleation Theory (CNT). The effect of varying in vitro parameters (initial drug concentration, rate of mixing gastric and intestinal fluid, stirring and filtration) on the interfacial tension gamma, being a key parameter in CNT, was investigated. The initial drug concentration had the most significant effect on gamma for both substances tested, although gamma is a fundamental parameter independent of concentration according to CNT. In the subsequent in silico prediction of drug absorption, by use of a Compartmental and Transit intestinal model, an empirical approach was used where gamma was allowed to vary with simulated small intestinal concentrations. The in silico predictions were compared to published human in vivo plasma drug concentration data for different doses of AZD0865 and dog intestinal drug concentrations, amount precipitated in intestine and plasma concentrations for mebendazole. The results showed that lack of significant crystallization effects on absorption in man of the model drug AZD0865 up to doses of 4 mg/kg could be predicted which was in accordance with in vivo data. Mebendazole intestinal precipitation in canines was also well described by the model, where mean predicted amount precipitated was 136% (range 111-164%) of measured solid amount, and mean predicted intestinal concentration was 94% (range 59-147%) of measured concentration. In conclusion, the in vitro-in silico approach can be used for predictions of absorption effects of crystallization, but the model could benefit from further development work on the theoretical crystallization model and in vitro experimental design.
  •  
3.
  • Carlert, Sara, et al. (författare)
  • Evaluation of the use of Classical Nucleation Theory for predicting intestinal crystallization of two weakly basic BCS class II drugs
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • The aim of this work was to evaluate an in vitro-in silico approach for prediction of small intestinal crystallization of two weakly basic model BCS class II drugs, AZD0865 and mebendazole, and the effect crystallization would have on the absorption prediction of the drug. The crystallization rates were investigated in an in vitro method using simulated gastric and intestinal media, and the result was modeled by using Classical Nucleation Theory (CNT). The effect of varying in vitro parameters (initial drug concentration, rate of mixing gastric and intestinal fluid, stirring and filtration) on the interfacial tension g, being a key parameter in CNT, was investigated. The initial drug concentration had the most significant effect on g for both substances tested, although g is a fundamental parameter independent of concentration according to CNT. In the subsequent in silico prediction of drug absorption an empirical approach was used where g was predicted at expected in vivo small intestinal concentrations. The results showed that lack of crystallization effects on absorption in man of the model drug AZD0865 up to doses of 4 mg/kg could be predicted. Mebendazole intestinal precipitation in canines was also well described by the model, where mean predicted amount precipitated was 111% (range 41-166%) of measured solid amount, and mean predicted supersaturation was 106% (range 73-118%) of measured supersaturation. The plasma concentration of mebendazole after duodenal administration of a solution could not be predicted by the model with the same precision in the absence of measured intestinal drug concentrations as basis for estimating the g value. In conclusion, the in vitro-in silico approach can be used for predictions of absorption effects of crystallization, but the model could benefit from further development work on the theoretical crystallization model and in vitro experimental design.
  •  
4.
  • Carlert, Sara, et al. (författare)
  • In Vivo Dog Intestinal Precipitation of Mebendazole : A Basic BCS Class II Drug
  • 2012
  • Ingår i: Molecular Pharmaceutics. - : American Chemical Society (ACS). - 1543-8384 .- 1543-8392. ; 9:10, s. 2903-2911
  • Tidskriftsartikel (refereegranskat)abstract
    • The purpose of this study was to investigate in viva intestinal precipitation of a model drug mebendazole, a basic BCS class II drug, using dogs with intestinal stomas for administration or sampling. After oral administration of a solution with an expected intestinal supersaturation of approximately 20 times the solubility, the measured supersaturation in dog intestinal fluid (DIE) was up to 10 times and, on average, only 11% of the given dose was retrieved as solid drug in the collected fluid from the stoma. The drug was rapidly absorbed with >90% of the total systemic exposure reached within three hours after duodenal administration of a solution. In silico absorption modeling showed that in vivo data were reasonably well described by a nonprecipitating solution. An in vitro model of precipitation in DIF predicted that the intestinal concentration of dissolved mebendazole would be less than 1/5 of the initial concentration within 10 min at concentrations comparable to in vivo. It was concluded that intestinal precipitation did not have any major influence on mebendazole absorption. The extent of precipitation was overpredicted in vitro given the in vivo absorption rate, and further work is needed to identify in vitro factors that could enable more accurate in vivo predictions of intestinal precipitation from solutions.
  •  
5.
  • Carlert, Sara, 1977- (författare)
  • Investigation and Prediction of Small Intestinal Precipitation of Poorly Soluble Drugs : a Study Involving in silico, in vitro and in vivo Assessment
  • 2012
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The main objectives of the present project were to increase the understanding of small intestinal precipitation of poorly soluble pharmaceutical drugs, investigate occurrence of crystalline small intestinal precipitation and effects of precipitation on absorption. The aim was to create and evaluate methods of predicting crystalline small intestinal drug precipitation using in vivo, in vitro and in silico models.In vivo small intestinal precipitation from highly supersaturated solutions of two weakly basic model drugs, AZD0865 and mebendazole, was investigated in humans and canine models. Potential precipitation of AZD0865 was investigated by examining dose dependent increases in human maximum plasma concentration and total exposure, which turned out to be dose linear over the range investigated, indicating no significant in vivo precipitation. The small intestinal precipitation of mebendazole was investigated from drug concentrations and amount of solid drug present in dog jejunum as well as through the bioavailability after direct duodenal administration in dogs. It was concluded that mebendazole small intestinal precipitation was limited, and that intestinal supersaturation was measurable for up to 90 minutes.In vitro precipitation methods utilizing simulated or real fasted gastric and intestinal fluids were developed in order to simulate the in vivo precipitation rate. The methods overpredicted in vivo precipitation when absorption of drug was not simulated. An in vitro-in silico approach was therefore developed, where the in vitro method was used for determining the interfacial tension (γ), necessary for describing crystallization in Classical Nucleation Theory (CNT). CNT was evaluated using a third model drug, bicalutamide, and could successfully describe different parts of the crystallization process of the drug. CNT was then integrated into an in silico absorption model. The in vivo precipitation results of AZD0865 and mebendazole were well predicted by the model, but only by allowing the fundamental constant γ to vary with concentration. Thus, the in vitro-in silico approach could be used for small intestinal precipitation prediction if the in vitro concentration closely matched in vivo small intestinal concentrations.
  •  
6.
  • Carlert, Sara, et al. (författare)
  • Predicting intestinal precipitation : a case example for a basic BCS class II drug
  • 2010
  • Ingår i: Pharmaceutical research. - : Springer Science and Business Media LLC. - 0724-8741 .- 1573-904X. ; 27:10, s. 2119-2130
  • Tidskriftsartikel (refereegranskat)abstract
    • PURPOSE: To investigate the prediction accuracy of in vitro and in vitro/in silico methods for in vivo intestinal precipitation of basic BCS class II drugs in humans. METHODS: Precipitation rate of a model drug substance, AZD0865 (pKa = 6.1; log K(D) = 4.2), was investigated in vitro using simulated intestinal media, and calculations of the crystallization rates were made with a theoretical model. Human intestinal precipitation was estimated by analysis of pharmacokinetic data from clinical studies at different doses. RESULTS: All in vitro models predicted rapid drug precipitation, where the intestinal concentration of dissolved AZD0865 at the highest dose tested was expected to decrease to half after less than 20 min. However, there was no indication of precipitation in vivo in humans as there was a dose proportional increase in drug plasma exposure. The theoretical model predicted no significant precipitation within the range of expected in vivo intestinal concentrations. CONCLUSIONS: This study indicated that simple in vitro methods of in vivo precipitation of orally administered bases overpredict the intestinal crystalline precipitation in vivo in humans. Hydrodynamic conditions were identified as one important factor that needs to be better addressed in future in vivo predictive methods.
  •  
7.
  • Darwich, Adam S., et al. (författare)
  • IMI - Oral biopharmaceutics tools project - Evaluation of bottom-up PBPK prediction success part 3 : Identifying gaps in system parameters by analysing In Silico performance across different compound classes
  • 2017
  • Ingår i: European Journal of Pharmaceutical Sciences. - : Elsevier BV. - 0928-0987 .- 1879-0720. ; 96, s. 626-642
  • Tidskriftsartikel (refereegranskat)abstract
    • Three Physiologically Based Pharmacokinetic software packages (GI-Sim, Simcyp (R) Simulator, and GastroPlus (TM)) were evaluated as part of the Innovative Medicine Initiative Oral Biopharmaceutics Tools project (OrBiTo) during a blinded "bottom-up" anticipation of human pharmacokinetics. After data analysis of the predicted vs. measured pharmacokinetics parameters, it was found that oral bioavailability (F-oral) was underpredicted for compounds with low permeability, suggesting improper estimates of intestinal surface area, colonic absorption and/or lack of intestinal transporter information. Foralwas also underpredicted for acidic compounds, suggesting overestimation of impact of ionisation on permeation, lack of information on intestinal transporters, or underestimation of solubilisation of weak acids due to less than optimal intestinal model pH settings or underestimation of bile micelle contribution. F-oral was overpredicted for weak bases, suggesting inadequate models for precipitation or lack of in vitro precipitation information to build informed models. Relative bioavailability was underpredicted for both high logP compounds as well as poorly water-soluble compounds, suggesting inadequate models for solubility/dissolution, underperforming bile enhancement models and/or lack of biorelevant solubility measurements. These results indicate areas for improvement in model software, modelling approaches, and generation of applicable input data. However, caution is required when interpreting the impact of drug-specific properties in this exercise, as the availability of input parameters was heterogeneous and highly variable, and the modellers generally used the data "as is" in this blinded bottom-up prediction approach.
  •  
8.
  • Margolskee, Alison, et al. (författare)
  • IMI - oral biopharmaceutics tools project - evaluation of bottom-up PBPK prediction success part 1 : Characterisation of the OrBiTo database of compounds
  • 2017
  • Ingår i: European Journal of Pharmaceutical Sciences. - : Elsevier BV. - 0928-0987 .- 1879-0720. ; 96, s. 598-609
  • Tidskriftsartikel (refereegranskat)abstract
    • Predicting oral bioavailability (F-oral) is of importance for estimating systemic exposure of orally administered drugs. Physiologically-based pharmacokinetic (PBPK) modelling and simulation have been applied extensively in biopharmaceutics recently. The Oral Biopharmaceutical Tools (OrBiTo) project (Innovative Medicines Initiative) aims to develop and improve upon biopharmaceutical tools, including PBPK absorption models. A large-scale evaluation of PBPK models may be considered the first step. Here we characterise the OrBiTo active pharmaceutical ingredient (API) database for use in a large-scale simulation study. The OrBiTo database comprised 83 APIs and 1475 study arms. The database displayed a median logP of 3.60 (2.40-4.58), human blood-to-plasma ratio of 0.62 (0.57-0.71), and fraction unbound in plasma of 0.05 (0.01-0.17). The database mainly consisted of basic compounds (48.19%) and Biopharmaceutics Classification System class II compounds (55.81%). Median human intravenous clearance was 16.9 L/h (interquartile range: 11.6-43.6 L/h; n = 23), volume of distribution was 80.8 L (54.5-239 L; n = 23). The majority of oral formulations were immediate release (IR: 87.6%). Human Foral displayed a median of 0.415 (0.203-0.724; n = 22) for IR formulations. The OrBiTo database was found to be largely representative of previously published datasets. 43 of the APIs were found to satisfy the minimum inclusion criteria for the simulation exercise, and many of these have significant gaps of other key parameters, which could potentially impact the interpretability of the simulation outcome. However, the OrBiTo simulation exercise represents a unique opportunity to perform a large-scale evaluation of the PBPK approach to predicting oral biopharmaceutics.
  •  
9.
  • Margolskee, Alison, et al. (författare)
  • IMI - Oral biopharmaceutics tools project - Evaluation of bottom-up PBPK prediction success part 2 : An introduction to the simulation exercise and overview of results
  • 2017
  • Ingår i: European Journal of Pharmaceutical Sciences. - : Elsevier BV. - 0928-0987 .- 1879-0720. ; 96, s. 610-625
  • Tidskriftsartikel (refereegranskat)abstract
    • Orally administered drugs are subject to a number of barriers impacting bioavailability (F-oral), causing challenges during drug and formulation development. Physiologically-based pharmacokinetic (PBPK) modelling can help during drug and formulation development by providing quantitative predictions through a systems approach. The performance of three available PBPK software packages (GI-Sim, Simcyp (R), and GastroPlus (TM)) were evaluated by comparing simulated and observed pharmacokinetic (PK) parameters. Since the availability of input parameters was heterogeneous and highly variable, caution is required when interpreting the results of this exercise. Additionally, this prospective simulation exercise may not be representative of prospective modelling in industry, as API information was limited to sparse details. 43 active pharmaceutical ingredients (APIs) from the OrBiTo database were selected for the exercise. Over 4000 simulation output files were generated, representing over 2550 study arm-institution-software combinations and approximately 600 human clinical study arms simulated with overlap. 84% of the simulated study arms represented administration of immediate release formulations, 11% prolonged or delayed release, and 5% intravenous (i.v.). Higher percentages of i.v. predicted area under the curve (AUC) were within two-fold of observed (52.9%) compared to per oral (p.o.) (37.2%), however, F-oral and relative AUC (F-rel) between p.o. formulations and solutions were generally well predicted (64.7% and 75.0%). Predictive performance declined progressing from i.v. to solution and immediate release tablet, indicating the compounding error with each layer of complexity. Overall performance was comparable to previous large-scale evaluations. A general overprediction of AUC was observed with average fold error (AFE) of 1.56 over all simulations. AFE ranged from 0.0361 to 64.0 across the 43 APIs, with 25 showing overpredictions. Discrepancies between software packages were observed for a few APIs, the largest being 606, 171, and 81.7-fold differences in AFE between SimCYP and GI-Sim, however average performance was relatively consistent across the three software platforms.
  •  
10.
  • Plum, Jakob, et al. (författare)
  • Investigation of the Intra- and Interlaboratory Reproducibility of a Small Scale Standardized Supersaturation and Precipitation Method
  • 2017
  • Ingår i: Molecular Pharmaceutics. - : American Chemical Society (ACS). - 1543-8384 .- 1543-8392. ; 14:12, s. 4161-4169
  • Tidskriftsartikel (refereegranskat)abstract
    • The high number of poorly water-soluble compounds in drug development has increased the need for enabling formulations to improve oral bioavailability. One frequently applied approach is to induce supersaturation at the absorptive site, e.g., the small intestine, increasing the amount of dissolved compound available for absorption. However, due to the stochastic nature of nucleation, supersaturating drug delivery systems may lead to inter- and intrapersonal variability. The ability to define a feasible range with respect to the supersaturation level is a crucial factor for a successful formulation. Therefore, an in vitro method is needed, from where the ability of a compound to supersaturate can be defined in a reproducible way. Hence, this study investigates the reproducibility of an in vitro small scale standardized supersaturation and precipitation method (SSPM). First an intralaboratory reproducibility study of felodipine was conducted, after which seven partners contributed with data for three model compounds; aprepitant, felodipine, and fenofibrate, to determine the interlaboratory reproducibility of the SSPM. The first part of the SSPM determines the apparent degrees of supersaturation (aDS) to investigate for each compound. Each partner independently determined the maximum possible aDS and induced 100, 87.5, 75, and 50% of their determined maximum possible aDS in the SSPM. The concentration time profile of the supersaturation and following precipitation was obtained in order to determine the induction time (t(ind)) for detectable precipitation. The data showed that the absolute values of t(ind) and aDS were not directly comparable between partners, however, upon linearization of the data a reproducible rank ordering of the three model compounds was obtained based on the beta-value, which was defined as the slope of the In(t(ind)) versus In(aDS)(-2) plot. Linear regression of this plot showed that aprepitant had the highest beta-value, 15.1, while felodipine and fenofibrate had comparable beta-values, 4.0 and 4.3, respectively. Of the five partners contributing with full data sets, 80% could obtain the same rank order for the three model compounds using the SSPM (aprepitant > felodipine approximate to fenofibrate). The alpha-value is dependent on the experimental setup and can be used as a parameter to evaluate the uniformity of the data set. This study indicated that the SSPM was able to obtain the same rank order of the beta-value between partners and, thus, that the SSPM may be used to classify compounds depending on their supersaturation propensity.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy