SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Carotenuto F.) "

Sökning: WFRF:(Carotenuto F.)

  • Resultat 1-10 av 14
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  • Raia, P., et al. (författare)
  • Progress to extinction: increased specialisation causes the demise of animal clades
  • 2016
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • Animal clades tend to follow a predictable path of waxing and waning during their existence, regardless of their total species richness or geographic coverage. Clades begin small and undifferentiated, then expand to a peak in diversity and range, only to shift into a rarely broken decline towards extinction. While this trajectory is now well documented and broadly recognised, the reasons underlying it remain obscure. In particular, it is unknown why clade extinction is universal and occurs with such surprising regularity. Current explanations for paleontological extinctions call on the growing costs of biological interactions, geological accidents, evolutionary traps, and mass extinctions. While these are effective causes of extinction, they mainly apply to species, not clades. Although mass extinctions is the undeniable cause for the demise of a sizeable number of major taxa, we show here that clades escaping them go extinct because of the widespread tendency of evolution to produce increasingly specialised, sympatric, and geographically restricted species over time.
  •  
5.
  • Block, Keith I., et al. (författare)
  • Designing a broad-spectrum integrative approach for cancer prevention and treatment
  • 2015
  • Ingår i: Seminars in Cancer Biology. - : Academic Press. - 1044-579X .- 1096-3650. ; 35, s. S276-S304
  • Forskningsöversikt (refereegranskat)abstract
    • Targeted therapies and the consequent adoption of "personalized" oncology have achieved notable successes in some cancers; however, significant problems remain with this approach. Many targeted therapies are highly toxic, costs are extremely high, and most patients experience relapse after a few disease-free months. Relapses arise from genetic heterogeneity in tumors, which harbor therapy-resistant immortalized cells that have adopted alternate and compensatory pathways (i.e., pathways that are not reliant upon the same mechanisms as those which have been targeted). To address these limitations, an international task force of 180 scientists was assembled to explore the concept of a low-toxicity "broadspectrum" therapeutic approach that could simultaneously target many key pathways and mechanisms. Using cancer hallmark phenotypes and the tumor microenvironment to account for the various aspects of relevant cancer biology, interdisciplinary teams reviewed each hallmark area and nominated a wide range of high-priority targets (74 in total) that could be modified to improve patient outcomes. For these targets, corresponding low-toxicity therapeutic approaches were then suggested, many of which were phytochemicals. Proposed actions on each target and all of the approaches were further reviewed for known effects on other hallmark areas and the tumor microenvironment Potential contrary or procarcinogenic effects were found for 3.9% of the relationships between targets and hallmarks, and mixed evidence of complementary and contrary relationships was found for 7.1%. Approximately 67% of the relationships revealed potentially complementary effects, and the remainder had no known relationship. Among the approaches, 1.1% had contrary, 2.8% had mixed and 62.1% had complementary relationships. These results suggest that a broad-spectrum approach should be feasible from a safety standpoint. This novel approach has potential to be relatively inexpensive, it should help us address stages and types of cancer that lack conventional treatment, and it may reduce relapse risks. A proposed agenda for future research is offered. (C) 2015 The Authors. Published by Elsevier Ltd.
  •  
6.
  •  
7.
  • Perrino, C, et al. (författare)
  • Cardiovascular effects of treadmill exercise in physiological and pathological preclinical settings
  • 2011
  • Ingår i: American journal of physiology. Heart and circulatory physiology. - : American Physiological Society. - 1522-1539 .- 0363-6135. ; 300:6, s. H1983-H1989
  • Tidskriftsartikel (refereegranskat)abstract
    • Exercise adaptations result from a coordinated response of multiple organ systems, including cardiovascular, pulmonary, endocrine-metabolic, immunologic, and skeletal muscle. Among these, the cardiovascular system is the most directly affected by exercise, and it is responsible for many of the important acute changes occurring during physical training. In recent years, the development of animal models of pathological or physiological cardiac overload has allowed researchers to precisely analyze the complex cardiovascular responses to stress in genetically altered murine models of human cardiovascular disease. The intensity-controlled treadmill exercise represents a well-characterized model of physiological cardiac hypertrophy because of its ability to mimic the typical responses to exercise in humans. In this review, we describe cardiovascular adaptations to treadmill exercise in mice and the most important parameters that can be used to quantify such modifications. Moreover, we discuss how treadmill exercise can be used to perform physiological testing in mouse models of disease and to enlighten the role of specific signaling pathways on cardiac function.
  •  
8.
  • Raia, Pasquale, et al. (författare)
  • Rapid action in the Palaeogene. The relationship between phenotypic and taxonomic diversification in Cenozoic mammals
  • 2012
  • Ingår i: Proceedings of the Royal Society of London. Biological Sciences. - : The Royal Society. - 0962-8452 .- 1471-2954.
  • Tidskriftsartikel (refereegranskat)abstract
    • A classic question in evolutionary biology concerns the tempo and mode of lineage evolution. Considered variously in relation to resource utilization, intrinsic constraints or hierarchic level, the question of how evolutionary change occurs in general has continued to draw the attention of the field for over a century and a half. Here we use the largest species-level phylogeny of Coenozoic fossil mammals (1031 species) ever assembled and their body size estimates, to show that body size and taxonomic diversification rates declined from the origin of placentals towards the present, and very probably correlate to each other. These findings suggest that morphological and taxic diversifications of mammals occurred hierarchically, with major shifts in body size coinciding with the birth of large clades, followed by taxonomic diversification within these newly formed clades. As the clades expanded, rates of taxonomic diversification proceeded independently of phenotypic evolution. Such a dynamic is consistent with the idea, central to the Modern Synthesis, that mammals radiated adaptively, with the filling of adaptive zones following the radiation.
  •  
9.
  •  
10.
  • Pellegrino, T, et al. (författare)
  • Moderated Poster Session 3 : Monday 4 May 2015, 10
  • 2015
  • Ingår i: European Heart Journal Cardiovascular Imaging. - : Oxford University Press (OUP). - 2047-2404 .- 2047-2412. ; 16 Suppl 1
  • Tidskriftsartikel (refereegranskat)
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 14

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy