SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Carragher Bridget) "

Sökning: WFRF:(Carragher Bridget)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Lander, Gabriel C., et al. (författare)
  • Bacteriophage lambda stabilization by auxiliary protein gpD: Timing, location, and mechanism of attachment determined by cryo-EM
  • 2008
  • Ingår i: Structure. - : Elsevier BV. - 0969-2126. ; 16:9, s. 1399-1406
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the cryo-EM structure of bacteriophage lambda and the mechanism for stabilizing the 20-angstrom-thick capsid containing the dsDNA genome. The crystal structure of the HK97 bacteriophage capsid fits most of the T = 7 lambda particle density with only minor adjustment. A prominent surface feature at the 3-fold axes corresponds to the cementing protein gpD, which is necessary for stabilization of the capsid shell. Its position coincides with the location of the covalent cross-link formed in the docked HK97 crystal structure, suggesting an evolutionary replacement of this gene product in lambda by autocatalytic chemistry in HK97. The crystal structure of the trimeric gpD, in which the 14 N-terminal residues required for capsid binding are disordered, fits precisely into the corresponding EM density. The N-terminal residues of gpD are well ordered in the cryo-EM density, adding a strand to a beta-sheet formed by the capsid proteins and explaining the mechanism of particle stabilization.
  •  
2.
  • Lander, Gabriel C, et al. (författare)
  • DNA bending-induced phase transition of encapsidated genome in phage λ
  • 2013
  • Ingår i: Nucleic Acids Research. - : Oxford University Press (OUP). - 1362-4962 .- 0305-1048. ; 41:8, s. 4518-4518
  • Tidskriftsartikel (refereegranskat)abstract
    • The DNA structure in phage capsids is determined by DNA-DNA interactions and bending energy. The effects of repulsive interactions on DNA interaxial distance were previously investigated, but not the effect of DNA bending on its structure in viral capsids. By varying packaged DNA length and through addition of spermine ions, we transform the interaction energy from net repulsive to net attractive. This allowed us to isolate the effect of bending on the resulting DNA structure. We used single particle cryo-electron microscopy reconstruction analysis to determine the interstrand spacing of double-stranded DNA encapsidated in phage λ capsids. The data reveal that stress and packing defects, both resulting from DNA bending in the capsid, are able to induce a long-range phase transition in the encapsidated DNA genome from a hexagonal to a cholesteric packing structure. This structural observation suggests significant changes in genome fluidity as a result of a phase transition affecting the rates of viral DNA ejection and packaging.
  •  
3.
  • Majzoub, Ramsey N, et al. (författare)
  • Uptake and transfection efficiency of PEGylated cationic liposome-DNA complexes with and without RGD-tagging.
  • 2014
  • Ingår i: Biomaterials. - : Elsevier BV. - 1878-5905 .- 0142-9612. ; 35:18, s. 4996-5005
  • Tidskriftsartikel (refereegranskat)abstract
    • Steric stabilization of cationic liposome-DNA (CL-DNA) complexes is required for in vivo applications such as gene therapy. PEGylation (PEG: poly(ethylene glycol)) of CL-DNA complexes by addition of PEG2000-lipids yields sterically stabilized nanoparticles but strongly reduces their gene delivery efficacy. PEGylation-induced weakening of the electrostatic binding of CL-DNA nanoparticles to cells (leading to reduced uptake) has been considered as a possible cause, but experimental results have been ambiguous. Using quantitative live-cell imaging in vitro, we have investigated cell attachment and uptake of PEGylated CL-DNA nanoparticles with and without a custom synthesized RGD-peptide grafted to the distal ends of PEG2000-lipids. The RGD-tagged nanoparticles exhibit strongly increased cellular attachment as well as uptake compared to nanoparticles without grafted peptide. Transfection efficiency of RGD-tagged PEGylated CL-DNA NPs increases by about an order of magnitude between NPs with low and high membrane charge density (σM; the average charge per unit area of the membrane; controlled by the molar ratio of cationic to neutral lipid), even though imaging data show that uptake of RGD-tagged particles is only slightly enhanced by high σM. This suggests that endosomal escape and, as a result, transfection efficiency of RGD-tagged NPs is facilitated by high σM. We present a model describing the interactions between PEGylated CL-DNA nanoparticles and the anionic cell membrane which shows how the PEG grafting density and membrane charge density affect adhesion of nanoparticles to the cell surface.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy