SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Carrilho da Graça Guilherme) "

Sökning: WFRF:(Carrilho da Graça Guilherme)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Albuquerque, Daniel, et al. (författare)
  • LES simulation of oscillating natural ventilation driven by vortex shedding in isolated buildings
  • 2020
  • Ingår i: Proceedings of Building Simulation 2019: 16th Conference of IBPSA. - : IBPSA. - 9781775052012 ; , s. 644-649
  • Konferensbidrag (refereegranskat)abstract
    • A recently published study presented a new type of natural ventilation (NV) flow, named pumping ventilation. The oscilatory mechanism of vortex shedding that occurs at the wake region of an isolated building drives this new type of ventilation in rooms with two (or more) openings facing the leeward or windward side of an isolated building. This paper presents a validated Large Eddy Simulation (LES) study of oscillating/pumping NV in an isolated building using three different separations (s') between its two windows. LES is validated using an experimental database from measurements performed at the University of Gavle boundary layer wind tunnel (WT). The measurements use a cubic model with 0.45m side representing a three-story building at a 1/20 scale that allows the use of bottom-hung windows. LES results show a good agreement with the measured non-dimensional ventilation rates. A dimensionless analysis shows the dominant frequencies of the pumping flow, are close to the Strouhal frequency.
  •  
2.
  • Albuquerque, Daniel P., et al. (författare)
  • Experimental and numerical investigation of pumping ventilation on the leeward side of a cubic building
  • 2020
  • Ingår i: Building and Environment. - : Elsevier. - 0360-1323 .- 1873-684X. ; 179
  • Tidskriftsartikel (refereegranskat)abstract
    • Unstable interaction between shear layers that form in the wake of an isolated building exposed to wind can drive natural pumping ventilation in windward and leeward facing rooms with two or more horizontally separated openings. This paper presents an experimental and numerical study of pumping ventilation in a three-story cubic building with two leeward openings in its middle floor. Reduced-scaled measurements were performed in the University of Gävle atmospheric-boundary-layer wind tunnel. The ventilation mechanism was investigated using smoke visualization, hot wire anemometry and particle image velocimetry. Effective ventilation rates were obtained using a tracer gas decay method. Experimental results confirmed that pumping ventilation is a 3D oscillatory unstable phenomenon with periodic behavior over several oscillation cycles. Measured flowrates show a linear relation between the effective ventilation rate and window separation. The numerical simulations used two turbulence modeling approaches: unsteady Reynolds-averaged Navier-Stokes (URANS) and large eddy simulation (LES). Both URANS and LES could predict vortex shedding frequency with an error below 5%. LES showed a good agreement with the measured ventilation rates, with an error below 10%, while URANS underestimated ventilation rates by at least 40%. The ventilation efficiency, obtained by LES, ranged between 0.60 and 0.75 (for the case with larger window separation). The results show that LES may be a suitable simulation approach for pumping ventilation. In contrast, URANS cannot simulate pumping ventilation.
  •  
3.
  • Carrilho da Graça, Guilherme, et al. (författare)
  • Pumping ventilation of corner and single sided rooms with two openings
  • 2021
  • Ingår i: Building and Environment. - : Elsevier. - 0360-1323 .- 1873-684X. ; 205
  • Tidskriftsartikel (refereegranskat)abstract
    • Corner rooms with two or more open windows in perpendicular facades can be naturally ventilated in cross-ventilation or pumping ventilation. These two airflow regimes also occur in rooms with two openings in the same façade, in the form of single sided pumping or cross sided ventilation. This paper presents an experimental and numerical simulation study of the scale and occurrence of these two flow regimes for rooms in a rectangular building exposed to wind. Flow visualization and tracer gas measurement of effective airflow were performed in an atmospheric boundary layer wind tunnel using a rectangular model of a three-story building (1/20 scale) with a ventilated middle floor. Experimental results show that pumping ventilation occurs when the wind is perpendicular to the façade (single sided rooms) or aligned with the building corner (corner rooms). In addition to these two perfectly aligned wind directions, pumping also occurs for a range of incoming wind angles: ±19° for single sided; and ±9° for corner rooms. As a result, for isolated rectangular buildings that have, at least, one single sided and two corner rooms in each facade, pumping ventilation can potentially occur in two or more rooms for 62 % of incoming wind directions. To investigate the transition between steady cross-ventilation and unsteady pumping ventilation, three-dimensional computational fluid dynamics large eddy simulations were performed to obtain wind generated pressures in the ventilation openings. Results show that the transition from cross-ventilation to pumping occurs when the steady pressure becomes smaller than the unsteady component. These results are used to develop a pressure based simplified model for corner ventilation that can predict effective airflow from external wind generated pressures with an average error below 10.2 %. © 2021 Elsevier Ltd
  •  
4.
  • Hayati, Abolfazl (författare)
  • Natural Ventilation and Air Infiltration in Large Single‑Zone Buildings : Measurements and Modelling with Reference to Historical Churches
  • 2017
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Natural ventilation is the dominating ventilation process in ancient buildings like churches, and also in most domestic buildings in Sweden and in the rest of the world. These buildings are naturally ventilated via air infiltration and airing. Air infiltration is the airflow through adventitious leakages in the building envelope, while airing is the intentional air exchange through large openings like windows and doors. Airing can in turn be performed either as single-sided (one opening) or as cross flow ventilation (two or more openings located on different walls). The total air exchange affects heating energy and indoor air quality. In churches, deposition of airborne particles causes gradual soiling of indoor surfaces, including paintings and other pieces of art. Significant amounts of particles are emitted from visitors and from candles, incense, etc. Temporary airing is likely to reduce this problem, and it can also be used to adjust the indoor temperature. The present study investigates mechanisms and prediction models regarding air infiltration and open-door airing by means of field measurements, experiments in wind tunnel and computer modelling.In natural ventilation, both air infiltration and airing share the same driving forces, i.e. wind and buoyancy (indoor-outdoor temperature differences). Both forces turn out to be difficult to predict, especially wind induced flows and the combination of buoyancy and wind. In the first part of the present study, two of the most established models for predicting air infiltration rate in buildings were evaluated against measurements in three historical stone churches in Sweden. A correction factor of 0.8 is introduced to adjust one of the studied models (which yielded better predictions) for fitting the large single zones like churches. Based on field investigation and IR-thermography inspections, a detailed numerical model was developed for prediction of air infiltration, where input data included assessed level of the neutral pressure level (NPL). The model functionality was validated against measurements in one of the case studies, indicating reasonable prediction capability. It is suggested that this model is further developed by including a more systematic calibration system for more building types and with different weather conditions.Regarding airing, both single-sided and cross flow rates through the porches of various church buildings were measured with tracer gas method, as well as through direct measurements of the air velocity in a porch opening. Measurement results were compared with predictions attained from four previously developed models for single‑sided ventilation. Models that include terms for wind turbulence were found to yield somewhat better predictions. According to the performed measurements, the magnitude of one hour single-sided open-door airing in a church typically yields around 50% air exchange, indicating that this is a workable ventilation method, also for such large building volumes. A practical kind of diagram to facilitate estimation of suitable airing period is presented.The ability of the IDA Indoor Climate and Energy (IDA-ICE) computer program to predict airing rates was examined by comparing with field measurements in a church. The programs’ predictions of single-sided airflows through an open door of the church were of the same magnitude as the measured ones; however, the effect of wind direction was not well captured by the program, indicating a development potential.Finally, wind driven air flows through porch type openings of a church model were studied in a wind tunnel, where the airing rates were measured by tracer gas. At single-sided airing, a higher flow rate was observed at higher wind turbulence and when the opening was on the windward side of the building, in agreement with field measurements. Further, the airing rate was on the order of 15 times higher at cross flow than at single-sided airing. Realization of cross flow thus seems highly recommendable for enhanced airing. Calibration constants for a simple equation for wind driven flow through porches are presented. The measurements also indicate that advection through turbulence is a more important airing mechanism than pumping. The present work adds knowledge particularly to the issues of air infiltration and airing through doors, in large single zones. The results can be applicable also to other kinds of large single-zone buildings, like industry halls, atriums and sports halls.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy