SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Carrington Stephen D) "

Sökning: WFRF:(Carrington Stephen D)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Haas, Brian J., et al. (författare)
  • Genome sequence and analysis of the Irish potato famine pathogen Phytophthora infestans
  • 2009
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 461:7262, s. 393-398
  • Tidskriftsartikel (refereegranskat)abstract
    • Phytophthora infestans is the most destructive pathogen of potato and a model organism for the oomycetes, a distinct lineage of fungus-like eukaryotes that are related to organisms such as brown algae and diatoms. As the agent of the Irish potato famine in the mid-nineteenth century, P. infestans has had a tremendous effect on human history, resulting in famine and population displacement(1). To this day, it affects world agriculture by causing the most destructive disease of potato, the fourth largest food crop and a critical alternative to the major cereal crops for feeding the world's population(1). Current annual worldwide potato crop losses due to late blight are conservatively estimated at $6.7 billion(2). Management of this devastating pathogen is challenged by its remarkable speed of adaptation to control strategies such as genetically resistant cultivars(3,4). Here we report the sequence of the P. infestans genome, which at similar to 240 megabases (Mb) is by far the largest and most complex genome sequenced so far in the chromalveolates. Its expansion results from a proliferation of repetitive DNA accounting for similar to 74% of the genome. Comparison with two other Phytophthora genomes showed rapid turnover and extensive expansion of specific families of secreted disease effector proteins, including many genes that are induced during infection or are predicted to have activities that alter host physiology. These fast-evolving effector genes are localized to highly dynamic and expanded regions of the P. infestans genome. This probably plays a crucial part in the rapid adaptability of the pathogen to host plants and underpins its evolutionary potential.
  •  
2.
  • Goyette, Philippe, et al. (författare)
  • High-density mapping of the MHC identifies a shared role for HLA-DRB1*01 : 03 in inflammatory bowel diseases and heterozygous advantage in ulcerative colitis
  • 2015
  • Ingår i: Nature Genetics. - New York, USA : Nature Publishing Group. - 1061-4036 .- 1546-1718. ; 47:2, s. 172-179
  • Tidskriftsartikel (refereegranskat)abstract
    • Genome-wide association studies of the related chronic inflammatory bowel diseases (IBD) known as Crohn's disease and ulcerative colitis have shown strong evidence of association to the major histocompatibility complex (MHC). This region encodes a large number of immunological candidates, including the antigen-presenting classical human leukocyte antigen (HLA) molecules. Studies in IBD have indicated that multiple independent associations exist at HLA and non-HLA genes, but they have lacked the statistical power to define the architecture of association and causal alleles. To address this, we performed high-density SNP typing of the MHC in >32,000 individuals with IBD, implicating multiple HLA alleles, with a primary role for HLA-DRB1*01:03 in both Crohn's disease and ulcerative colitis. Noteworthy differences were observed between these diseases, including a predominant role for class II HLA variants and heterozygous advantage observed in ulcerative colitis, suggesting an important role of the adaptive immune response in the colonic environment in the pathogenesis of IBD.
  •  
3.
  • Adamczyk, Barbara, 1985, et al. (författare)
  • Pregnancy-Associated Changes of IgG and Serum N-Glycosylation in Camel (Camelus dromedarius).
  • 2016
  • Ingår i: Journal of proteome research. - : American Chemical Society (ACS). - 1535-3907 .- 1535-3893. ; 15:9, s. 3255-65
  • Tidskriftsartikel (refereegranskat)abstract
    • The dromedary camel (Camelus dromedarius) is an agriculturally important species of high economic value but of low reproductive efficiency. Serum and IgG N-glycosylation are affected by physiological and pathogenic changes and might therefore be a useful diagnostic tool in camel livestock management. This study presents the first comprehensive annotation of the N-glycome from dromedary camel serum as well as their single-domain and conventional antibodies and its subsequent application for camel pregnancy diagnostics. N-glycans were released by PNGaseF, labeled with 2-aminobenzamide (2-AB), and analyzed by hydrophilic interaction liquid chromatography with fluorescent detection (HILIC-UPLC-FLD), enzymatic sequencing and mass spectrometry (MS). The use of a high-throughput robotic platform for sample preparation allowed the rapid generation of glycomics data from pregnant (n = 8) and nonpregnant (n = 8) camels of the Majaheem and Wadha breed. IgG N-glycans dominate the glycan profile of camel serum and present a mixture of core-fucosylated and noncore-fucosylated N-glycans which can contain N-glycolylneuraminic and N-acetylneuraminic acid. Significant pregnancy-associated but breed-independent increases in galactosylation, core-fucosylation, sialylation, and decreases in serum O-acetylation were observed. The monitoring of IgG and serum N-glycosylation presents an attractive complementary test for camel pregnancy diagnostics and presents an interesting tool for biomarker discovery in camel health and breeding.
  •  
4.
  • El-Sayed, Najib M., et al. (författare)
  • The genome sequence of Trypanosoma cruzi, etiologic agent of Chagas disease.
  • 2005
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 1095-9203 .- 0036-8075. ; 309:5733, s. 409-15
  • Tidskriftsartikel (refereegranskat)abstract
    • Whole-genome sequencing of the protozoan pathogen Trypanosoma cruzi revealed that the diploid genome contains a predicted 22,570 proteins encoded by genes, of which 12,570 represent allelic pairs. Over 50% of the genome consists of repeated sequences, such as retrotransposons and genes for large families of surface molecules, which include trans-sialidases, mucins, gp63s, and a large novel family (>1300 copies) of mucin-associated surface protein (MASP) genes. Analyses of the T. cruzi, T. brucei, and Leishmania major (Tritryp) genomes imply differences from other eukaryotes in DNA repair and initiation of replication and reflect their unusual mitochondrial DNA. Although the Tritryp lack several classes of signaling molecules, their kinomes contain a large and diverse set of protein kinases and phosphatases; their size and diversity imply previously unknown interactions and regulatory processes, which may be targets for intervention.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy