SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Carrizo Garrizo) "

Sökning: WFRF:(Carrizo Garrizo)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Astaraki, Mehdi, PhD Student, 1984-, et al. (författare)
  • Multimodal brain tumor segmentation with normal appearance autoencoder
  • 2019
  • Ingår i: International MICCAI Brainlesion Workshop. - Cham : Springer Nature. ; , s. 316-323
  • Konferensbidrag (refereegranskat)abstract
    • We propose a hybrid segmentation pipeline based on the autoencoders’ capability of anomaly detection. To this end, we, first, introduce a new augmentation technique to generate synthetic paired images. Gaining advantage from the paired images, we propose a Normal Appearance Autoencoder (NAA) that is able to remove tumors and thus reconstruct realistic-looking, tumor-free images. After estimating the regions where the abnormalities potentially exist, a segmentation network is guided toward the candidate region. We tested the proposed pipeline on the BraTS 2019 database. The preliminary results indicate that the proposed model improved the segmentation accuracy of brain tumor subregions compared to the U-Net model. 
  •  
2.
  • Brusini, Irene, et al. (författare)
  • Fully automatic estimation of the waist of the nerve fiber layer at the optic nerve head angularly resolved
  • 2021
  • Ingår i: Progress in Biomedical Optics and Imaging - Proceedings of SPIE. - : SPIE-Intl Soc Optical Eng. ; , s. 1D1-1D8
  • Konferensbidrag (refereegranskat)abstract
    • The present project aims at developing a fully automatic software for estimation of the waist of the nerve fiber layer in the Optic Nerve Head (ONH) angularly resolved in the frontal plane as a tool for morphometric monitoring of glaucoma. The waist of the nerve fiber layer is here defined as Pigment epithelium central limit –Inner limit of the retina – Minimal Distance, (PIMD). 3D representations of the ONH were collected with high resolution OCT in young not glaucomatous eyes and glaucomatous eyes. An improved tool for manual annotation was developed in Python. This tool was found user friendly and to provide sufficiently precise manual annotation. PIMD was automatically estimated with a software consisting of one AI model for detection of the inner limit of the retina and another AI model for localization of the Optic nerve head Pigment epithelium Central limit (OPCL). In the current project, the AI model for OPCL localization was retrained with new data manually annotated with the improved tool for manual annotation both in not glaucomatous eyes and in glaucomatous eyes. Finally, automatic annotations were compared to 3 annotations made by 3 independent annotators in an independent subset of both the not glaucomatous and the glaucomatous eyes. It was found that the fully automatic estimation of PIMD-angle overlapped the 3 manual annotators with small variation among the manual annotators. Considering interobserver variation, the improved tool for manual annotation provided less variation than our original annotation tool in not glaucomatous eyes suggesting that variation in glaucomatous eyes is due to variable pathological anatomy, difficult to annotate without error. The small relative variation in relation to the substantial overall loss of PIMD in the glaucomatous eyes compared to the not glaucomatous eyes suggests that our software for fully automatic estimation of PIMD-angle can now be implemented clinically for monitoring of glaucoma progression.
  •  
3.
  • Carrizo, Garrizo, et al. (författare)
  • Fully automatic estimation of the angular distribution of the waist of the nerve fiber layer in the optic nerve head
  • 2020
  • Ingår i: Ophthalmic Technologies XXX. - : SPIE-Intl Soc Optical Eng.
  • Konferensbidrag (refereegranskat)abstract
    • In this paper, an automatic strategy for measuring the thickness of the nerve fiber layer around the optic nerve head is proposed. The strategy presented uses two independent 2D U-nets that each perform a segmentation task. One network learns to segment the vitreous body in standard Cartesian image domain and the second learns to segment a disc around a point of interest in a polar image domain. The output from the neural networks are then combined to find the thickness of the waist of the nerve fiber layer as a function of the angle around the center of the optic nerve head in the frontal plane. The two networks are trained with a combined data set that has been captured on two separate OCT systems (spectral domain Topcon OCT 2000 and swept source Topcon OCT Triton) which have been annotated with a semi-automatic algorithm by up to 3 annotators. Initial results show that the automatic algorithm produces results that are comparable to the results from the semi-automatic algorithm used for reference, in a fraction of the time, independent of the annotator. The automatic algorithm has the potential to replace the semi-automatic algorithm and opens the possibility for clinical routine estimation of the nerve fiber layer. This would in turn allow the detection of loss of nerve fiber layer earlier than before which is anticipated to be important for detection of glaucoma.
  •  
4.
  •  
5.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy