SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Carstensen Kirberg Maren) "

Sökning: WFRF:(Carstensen Kirberg Maren)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • de las Heras Gala, Tonia, et al. (författare)
  • Association of changes in inflammation with variation in glycaemia, insulin resistance and secretion based on the KORA study
  • 2018
  • Ingår i: Diabetes/Metabolism Research and Reviews. - : Wiley. - 1520-7552. ; 34:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims: Subclinical systemic inflammation may contribute to the development of type 2 diabetes, but its association with early progression of glycaemic deterioration in persons without diabetes has not been fully investigated. Our primary aim was to assess longitudinal associations of changes in pro-inflammatory (leukocytes, high-sensitivity C-reactive protein (hsCRP)) and anti-inflammatory (adiponectin) markers with changes in markers that assessed glycaemia, insulin resistance, and secretion (HbA1c, HOMA-IR, and HOMA-ß). Furthermore, we aimed to directly compare longitudinal with cross-sectional associations. Materials and methods: This study includes 819 initially nondiabetic individuals with repeated measurements from the Cooperative Health Research in the Region of Augsburg (KORA) S4/F4 cohort study (median follow-up: 7.1 years). Longitudinal and cross-sectional associations were simultaneously examined using linear mixed growth models. Changes in markers of inflammation were used as independent and changes in markers of glycaemia/insulin resistance/insulin secretion as dependent variables. Models were adjusted for age, sex, major lifestyle and metabolic risk factors for diabetes using time-varying variables in the final model. Results: Changes of leukocyte count were positively associated with changes in HbA1c and HOMA-ß while changes in adiponectin were inversely associated with changes in HbA1c. All examined cross-sectional associations were statistically significant; they were generally stronger and mostly directionally consistent to the longitudinal association estimates. Conclusions: Adverse changes in low-grade systemic inflammation go along with glycaemic deterioration and increased insulin secretion independently of changes in other risk factors, suggesting that low-grade inflammation may contribute to the development of hyperglycaemia and a compensatory increase in insulin secretion.
  •  
2.
  • Wahl, Simone, et al. (författare)
  • Epigenome-wide association study of body mass index, and the adverse outcomes of adiposity
  • 2017
  • Ingår i: Nature. - : NATURE PUBLISHING GROUP. - 0028-0836 .- 1476-4687. ; 541:7635, s. 81-
  • Tidskriftsartikel (refereegranskat)abstract
    • Approximately 1.5 billion people worldwide are overweight or affected by obesity, and are at risk of developing type (2) diabetes, cardiovascular disease and related metabolic and inflammatory disturbances(1,2). Although the mechanisms linking adiposity to associated clinical conditions are poorly understood, recent studies suggest that adiposity may influence DNA methylation(3-6), a key regulator of gene expression and molecular phenotype(7). Here we use epigenome-wide association to show that body mass index (BMI; a key measure of adiposity) is associated with widespread changes in DNA methylation (187 genetic loci with P < 1 x 10(-7), range P = 9.2 x 10(-8) to 6.0 x 10(-46); n = 10,261 samples). Genetic association analyses demonstrate that the alterations in DNA methylation are predominantly the consequence of adiposity, rather than the cause. We find that methylation loci are enriched for functional genomic features in multiple tissues (P < 0.05), and show that sentinel methylation markers identify gene expression signatures at 38 loci (P < 9.0 x 10(-6), range P = 5.5 x 10(-6) to 6.1 x 10(-35), n = 1,785 samples). The methylation loci identify genes involved in lipid and lipoprotein metabolism, substrate transport and inflammatory pathways. Finally, we show that the disturbances in DNA methylation predict future development of type 2 diabetes (relative risk per 1 standard deviation increase in methylation risk score: 2.3 (2.07-2.56); P = 1.1 x 10(-54)). Our results provide new insights into the biologic pathways influenced by adiposity, and may enable development of new strategies for prediction and prevention of type 2 diabetes and other adverse clinical consequences of obesity.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy