SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Carta Manolo) "

Sökning: WFRF:(Carta Manolo)

  • Resultat 1-10 av 38
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bastide, Matthieu F, et al. (författare)
  • Pathophysiology of L-dopa-induced motor and non-motor complications in Parkinson's disease.
  • 2015
  • Ingår i: Progress in Neurobiology. - : Elsevier BV. - 1873-5118 .- 0301-0082. ; 132:Jul 21, s. 96-168
  • Forskningsöversikt (refereegranskat)abstract
    • Involuntary movements, or dyskinesia, represent a debilitating complication of levodopa (L-dopa) therapy for Parkinson's disease (PD). L-dopa-induced dyskinesia (LID) are ultimately experienced by the vast majority of patients. In addition, psychiatric conditions often manifested as compulsive behaviours, are emerging as a serious problem in the management of L-dopa therapy. The present review attempts to provide an overview of our current understanding of dyskinesia and other L-dopa-induced dysfunctions, a field that dramatically evolved in the past twenty years. In view of the extensive literature on LID, there appeared a critical need to re-frame the concepts, to highlight the most suitable models, to review the central nervous system (CNS) circuitry that may be involved, and to propose a pathophysiological framework was timely and necessary. An updated review to clarify our understanding of LID and other L-dopa-related side effects was therefore timely and necessary. This review should help in the development of novel therapeutic strategies aimed at preventing the generation of dyskinetic symptoms.
  •  
2.
  • Bezard, Erwan, et al. (författare)
  • Anti-dyskinetic effect of anpirtoline in animal models of L-DOPA-induced dyskinesia
  • 2013
  • Ingår i: Neuroscience Research. - : Elsevier BV. - 0168-0102. ; 77:4, s. 242-246
  • Tidskriftsartikel (refereegranskat)abstract
    • The serotonin system has emerged as a potential target for anti-dyskinetic therapy in Parkinson's disease. In fact, serotonin neurons can convert L-DOPA into dopamine, and mediate its synaptic release. However, they lack a feedback control mechanism able to regulate synaptic dopamine levels, which leads to un-physiological stimulation of post-synaptic striatal dopamine receptors. Accordingly, drugs able to dampen the activity of serotonin neurons can suppress L-DOPA-induced dyskinesia in animal models of Parkinson's disease. Here, we investigated the ability of the 5-HT1A/1B receptor agonist anpirtoline to counteract LDOPA-induced dyskinesia in L-DOPA-primed 6-OHDA-lesioned rats and MPTP-treated macaques. Results suggest that anpirtoline dose-dependently reduced dyskinesia both in rats and monkeys; however, the effect in MPTP-treated macaques was accompanied by a worsening of the Parkinson's disease score at significantly effective doses (1.5 and 2.0 mg/kg). At a lower dose (0.75 mg/ kg), anpirtoline markedly reduced dyskinesia in 4 out of 5 subjects, but statistical significance was prevented by the presence of a non-responsive subject. These results provide further evidence that the serotonin neurons contribute both to the pro-dyskinetic effect of L-DOPA and to its therapeutic efficacy in the rat and monkey models of Parkinson's disease. (c) 2013 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.
  •  
3.
  • Bezard, Erwan, et al. (författare)
  • Study of the antidyskinetic effect of eltoprazine in animal models of levodopa-induced dyskinesia
  • 2013
  • Ingår i: Movement Disorders. - : Wiley. - 0885-3185. ; 28:8, s. 1088-1096
  • Tidskriftsartikel (refereegranskat)abstract
    • The serotonin (5-hydroxytryptamine [5HT]) system has recently emerged as an important player in the appearance of l-3,4-dihydroxyphenylalanine (levodopa [l-dopa])-induced dyskinesia in animal models of Parkinson's disease. In fact, dopamine released as a false transmitter from serotonin neurons appears to contribute to the pulsatile stimulation of dopamine receptors, leading to the appearance of the abnormal involuntary movements. Thus, drugs able to dampen the activity of serotonin neurons hold promise for the treatment of dyskinesia. The authors investigated the ability of the mixed 5-HT 1A/1B receptor agonist eltoprazine to counteract l-dopa-induced dyskinesia in 6-hydroxydopamine-lesioned rats and in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated macaques. The data demonstrated that eltoprazine is extremely effective in suppressing dyskinesia in experimental models, although this effect was accompanied by a partial worsening of the therapeutic effect of l-dopa. Interestingly, eltoprazine was found to (synergistically) potentiate the antidyskinetic effect of amantadine. The current data indicated that eltoprazine is highly effective in counteracting dyskinesia in preclinical models. However, the partial worsening of the l-dopa effect observed after eltoprazine administration represents a concern; whether this side effect is due to a limitation of the animal models or to an intrinsic property of eltoprazine needs to be addressed in ongoing clinical trials. The data also suggest that the combination of low doses of eltoprazine with amantadine may represent a valid strategy to increase the antidyskinetic effect and reduce the eltoprazine-induced worsening of l-dopa therapeutic effects. (c) 2013 Movement Disorder Society
  •  
4.
  • Björklund, Tomas, et al. (författare)
  • Optimization of continuous in vivo DOPA production and studies on ectopic DA synthesis using rAAV5 vectors in Parkinsonian rats
  • 2009
  • Ingår i: Journal of Neurochemistry. - : Wiley. - 1471-4159 .- 0022-3042. ; 111:2, s. 355-367
  • Tidskriftsartikel (refereegranskat)abstract
    • Viral vector-mediated gene transfer is emerging as a novel therapeutic approach with clinical utility in treatment of Parkinson's disease. Recombinant adeno-associated viral (rAAV) vector in particular has been utilized for continuous l-3,4 dihydroxyphenylalanine (DOPA) delivery by expressing the tyrosine hydroxylase (TH) and GTP cyclohydrolase 1 (GCH1) genes which are necessary and sufficient for efficient synthesis of DOPA from dietary tyrosine. The present study was designed to determine the optimal stoichiometric relationship between TH and GCH1 genes for ectopic DOPA production and the cellular machinery involved in its synthesis, storage, and metabolism. For this purpose, we injected a fixed amount of rAAV5-TH vector and increasing amounts of rAAV5-GCH1 into the striatum of rats with complete unilateral dopamine lesion. After 7 weeks the animals were killed for either biochemical or histological analysis. We show that increasing the availability of 5,6,7,8-tetrahydro-l-biopterin (BH4) in the same cellular compartment as the TH enzyme resulted in better efficiency in DOPA synthesis, most likely by hindering inactivation of the enzyme and increasing its stability. Importantly, the BH4 synthesis from ectopic GCH1 expression was saturable, yielding optimal TH enzyme functionality between GCH1 : TH ratios of 1 : 3 and 1 : 7.
  •  
5.
  • Björklund, Tomas, et al. (författare)
  • Optimized adeno-associated viral vector-mediated striatal DOPA delivery restores sensorimotor function and prevents dyskinesias in a model of advanced Parkinson's disease.
  • 2010
  • Ingår i: Brain. - : Oxford University Press (OUP). - 1460-2156 .- 0006-8950. ; 133:Pt 2, s. 496-511
  • Tidskriftsartikel (refereegranskat)abstract
    • Viral vector-mediated gene transfer utilizing adeno-associated viral vectors has recently entered clinical testing as a novel tool for delivery of therapeutic agents to the brain. Clinical trials in Parkinson's disease using adeno-associated viral vector-based gene therapy have shown the safety of the approach. Further efforts in this area will show if gene-based approaches can rival the therapeutic efficacy achieved with the best pharmacological therapy or other, already established, surgical interventions. One of the strategies under development for clinical application is continuous 3,4-dihydroxyphenylalanine delivery. This approach has been shown to be efficient in restoring motor function and reducing established dyskinesias in rats with a partial lesion of the nigrostriatal dopamine projection. Here we utilized high purity recombinant adeno-associated viral vectors serotype 5 coding for tyrosine hydroxylase and its co-factor synthesizing enzyme guanosine-5'-triphosphate cyclohydrolase-1, delivered at an optimal ratio of 5 : 1, to show that the enhanced 3,4-dihydroxyphenylalanine production obtained with this optimized delivery system results in robust recovery of function in spontaneous motor tests after complete dopamine denervation. We found that the therapeutic efficacy was substantial and could be maintained for at least 6 months. The tyrosine hydroxylase plus guanosine-5'-triphosphate cyclohydrolase-1 treated animals were resistant to developing dyskinesias upon peripheral l-3,4-dihydroxyphenylalanine drug challenge, which is consistent with the interpretation that continuous dopamine stimulation resulted in a normalization of the post-synaptic response. Interestingly, recovery of forelimb use in the stepping test observed here was maintained even after a second lesion depleting the serotonin input to the forebrain, suggesting that the therapeutic efficacy was not solely dependent on dopamine synthesis and release from striatal serotonergic terminals. Taken together these results show that vector-mediated continuous 3,4-dihydroxyphenylalanine delivery has the potential to provide significant symptomatic relief even in advanced stages of Parkinson's disease.
  •  
6.
  • Brederlau, Anke, 1968, et al. (författare)
  • Transplantation of human embryonic stem cell-derived cells to a rat model of Parkinson's disease: effect of in vitro differentiation on graft survival and teratoma formation.
  • 2006
  • Ingår i: Stem cells (Dayton, Ohio). - : Oxford University Press (OUP). - 1066-5099 .- 1549-4918. ; 24:6, s. 1433-40
  • Tidskriftsartikel (refereegranskat)abstract
    • Human embryonic stem cells (hESCs) have been proposed as a source of dopamine (DA) neurons for transplantation in Parkinson's disease (PD). We have investigated the effect of in vitro predifferentiation on in vivo survival and differentiation of hESCs implanted into the 6-OHDA (6-hydroxydopamine)-lesion rat model of PD. The hESCs were cocultured with PA6 cells for 16, 20, or 23 days, leading to the in vitro differentiation into DA neurons. Grafted hESC-derived cells survived well and expressed neuronal markers. However, very few exhibited a DA neuron phenotype. Reversal of lesion-induced motor deficits was not observed. Rats grafted with hESCs predifferentiated in vitro for 16 days developed severe teratomas, whereas most rats grafted with hESCs predifferentiated for 20 and 23 days remained healthy until the end of the experiment. This indicates that prolonged in vitro differentiation of hESCs is essential for preventing formation of teratomas.
  •  
7.
  • Carlsson, Thomas, et al. (författare)
  • Impact of grafted serotonin and dopamine neurons on development of L-DOPA-induced dyskinesias in parkinsonian rats is determined by the extent of dopamine neuron degeneration.
  • 2009
  • Ingår i: Brain. - : Oxford University Press (OUP). - 1460-2156 .- 0006-8950. ; 132, s. 319-335
  • Tidskriftsartikel (refereegranskat)abstract
    • Previous studies have shown that serotonin neurons play an important role in the induction and maintenance of l-DOPA-induced dyskinesia in animals with lesion of the nigrostriatal dopamine system. Patients with Parkinson's disease that receive transplants of foetal ventral mesencephalic tissue, the graft cell preparation is likely to contain, in addition to dopamine neurons, serotonin neurons that will vary in number depending on the landmarks used for dissection. Here, we have studied the impact of grafted serotonin neurons-alone or mixed with dopamine neurons-on the development of l-DOPA-induced dyskinesia in rats with a partial 6-hydroxydopamine lesion of the host nigrostriatal projection. In these rats, which showed only low-level dyskinesia at the time of transplantation, serotonin grafts induced a worsening in the severity of dyskinesia that developed during continued l-DOPA treatment, while the dopamine-rich graft had the opposite, dampening effect. The detrimental effect seen in animals with serotonin neuron grafts was dramatically increased when the residual dopamine innervation in the striatum was removed by a second 6-hydroxydopamine lesion. Interestingly, rats with grafts that contained a mixture of dopamine and serotonin neurons (in approximately 2:1) showed a marked reduction in l-DOPA-induced dyskinesia over time, and the appearance of severe dyskinesia induced by the removal of the residual dopamine innervation, seen in the animals with transplants of serotonin neurons alone, was blocked. FosB expression in the striatal projection neurons, which is associated with dyskinesias, was also normalized by the dopamine-rich grafts, but not by the serotonin neuron grafts. These data indicate that as long as a sufficient portion, some 10-20%, of the dopamine innervation still remains, the increased host serotonin innervation generated by the grafted serotonin neurons will have limited effect on the development or severity of l-DOPA-induced dyskinesias. At more advanced stages of the disease, when the dopamine innervation of the putamen is reduced below this critical threshold, grafted serotonin neurons are likely to aggravate l-DOPA-induced dyskinesia in those cases where the dopamine re-innervation derived from the grafted neurons is insufficient in magnitude or do not cover the critical dyskinesia-inducing sub-regions of the grafted putamen. We conclude that it is not the absolute number of serotonin neurons in the grafts, but the relative densities of dopamine and serotonin innervations in the grafted striatum that is the critical factor in determining the long-term effect of foetal tissue graft, beneficial or detrimental, on dyskinesia in grafted Parkinson's disease patients.
  •  
8.
  • Carlsson, Thomas, et al. (författare)
  • Serotonin neuron transplants exacerbate L-DOPA-induced dyskinesias in a rat model of Parkinson's disease
  • 2007
  • Ingår i: The Journal of Neuroscience. - 1529-2401. ; 27:30, s. 8011-8022
  • Tidskriftsartikel (refereegranskat)abstract
    • Clinical trials in patients with Parkinson's disease have shown that transplants of fetal mesencephalic dopamine neurons can form a new functional innervation of the host striatum, but the clinical benefits have been highly variable: some patients have shown substantial recovery in motor function, whereas others have shown no improvement and even a worsening in the 3,4-dihydroxyphenyl-L-alanine (L-DOPA)-induced dyskinetic side effects. Differences in the composition of the grafted cell preparation may contribute to these discrepancies. In particular, the number of serotonin neurons contained in the graft can vary greatly depending on the dissection of the fetal tissue. Importantly, serotonin neurons have the ability to store and release dopamine, formed from exogenously administered L-DOPA. Here, we have evaluated the effect of transplants containing serotonin neurons, or a mixture of dopamine and serotonin neurons, on L-DOPA-induced dyskinesias in 6-hydroxydopamine-lesioned animals. As expected, dopamine neuron-rich grafts induced functional recovery, accompanied by a 60% reduction in L-DOPA-induced dyskinesia that developed gradually over the first 10 weeks. Rats with serotonin-rich grafts with few dopamine neurons, in contrast, showed a progressive worsening of their L-DOPA-induced dyskinesias over time, and no functional improvement. The antidyskinetic effect of dopamine-rich grafts was independent of the number of serotonin neurons present. We conclude that serotonin neurons in the grafts are likely to have a detrimental effect on L-DOPA-induced dyskinesias in cases in which the grafts contain no or few dopamine neurons.
  •  
9.
  • Carta, Manolo, et al. (författare)
  • Contribution of pre-synaptic mechanisms to l-DOPA-induced dyskinesia.
  • 2011
  • Ingår i: Neuroscience. - : Elsevier BV. - 1873-7544 .- 0306-4522. ; 198, s. 245-251
  • Tidskriftsartikel (refereegranskat)abstract
    • Positron emission tomography (PET) imaging studies have shown that peak-dose dyskinesia is associated to abnormally high levels of synaptic dopamine (DA) in the caudate-putamen of dyskinetic l-DOPA-treated patients. High striatal extracellular DA levels have also been found in dyskinetic 6-OHDA-lesioned rats as compared to non-dyskinetic ones, suggesting that extracellular DA levels may play a key role in the induction of dyskinesia. In this article we review the evidences pointing to the serotonin system as the primary cause for the abnormally high levels of l-DOPA-derived extracellular DA in Parkinson's disease, and we discuss the feasibility of a therapeutic approach targeting this system.
  •  
10.
  • Carta, Manolo, et al. (författare)
  • Dopamine released from 5-HT terminals is the cause of L-DOPA-induced dyskinesia in parkinsonian rats.
  • 2007
  • Ingår i: Brain. - : Oxford University Press (OUP). - 1460-2156 .- 0006-8950. ; 130:7, s. 1819-1833
  • Tidskriftsartikel (refereegranskat)abstract
    • n patients with Parkinson's disease, the therapeutic efficacy of L-DOPA medication is gradually lost over time, and abnormal involuntary movements, dyskinesias, gradually emerge as a prominent side-effect in response to previously beneficial doses of the drug. Here we show that dyskinesia induced by chronic L-DOPA treatment in rats with 6-hydroxydopamine-induced lesions of the nigrostriatal dopamine pathway is critically dependent on the integrity and function of the serotonergic system. Removal of the serotonin afferents, or dampening of serotonin neuron activity by 5-HT1A and 5-HT1B agonist drugs, resulted in a near-complete block of the L-DOPA-induced dyskinesias, suggesting that dysregulated dopamine release from serotonin terminals is the prime trigger of dyskinesia in the rat Parkinson's disease model. In animals with complete dopamine lesions, the spared serotonin innervation was unable to sustain the therapeutic effect of L-DOPA, suggesting that dopamine released as a 'false transmitter' from serotonin terminals is detrimental rather than beneficial. The potent synergistic effect of low doses of 5-HT1A and 5-HT1B agonists to suppress dyskinesia, without affecting the anti-parkinsonian effect of L-DOPA in presence of spared dopamine terminals, suggests an early use of these drugs to counteract the development of dyskinesia in Parkinson's disease patients.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 38

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy