SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Casali G) "

Sökning: WFRF:(Casali G)

  • Resultat 1-10 av 28
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bombarda, F., et al. (författare)
  • Runaway electron beam control
  • 2019
  • Ingår i: Plasma Physics and Controlled Fusion. - : IOP Publishing. - 1361-6587 .- 0741-3335. ; 61:1
  • Tidskriftsartikel (refereegranskat)
  •  
2.
  • 2017
  • swepub:Mat__t
  •  
3.
  • Meyer, H., et al. (författare)
  • Overview of progress in European medium sized tokamaks towards an integrated plasma-edge/wall solution
  • 2017
  • Ingår i: Nuclear Fusion. - : Institute of Physics Publishing (IOPP). - 0029-5515 .- 1741-4326. ; 57:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Integrating the plasma core performance with an edge and scrape-off layer (SOL) that leads to tolerable heat and particle loads on the wall is a major challenge. The new European medium size tokamak task force (EU-MST) coordinates research on ASDEX Upgrade (AUG), MAST and TCV. This multi-machine approach within EU-MST, covering a wide parameter range, is instrumental to progress in the field, as ITER and DEMO core/pedestal and SOL parameters are not achievable simultaneously in present day devices. A two prong approach is adopted. On the one hand, scenarios with tolerable transient heat and particle loads, including active edge localised mode (ELM) control are developed. On the other hand, divertor solutions including advanced magnetic configurations are studied. Considerable progress has been made on both approaches, in particular in the fields of: ELM control with resonant magnetic perturbations (RMP), small ELM regimes, detachment onset and control, as well as filamentary scrape-off-layer transport. For example full ELM suppression has now been achieved on AUG at low collisionality with n = 2 RMP maintaining good confinement H-H(98,H-y2) approximate to 0.95. Advances have been made with respect to detachment onset and control. Studies in advanced divertor configurations (Snowflake, Super-X and X-point target divertor) shed new light on SOL physics. Cross field filamentary transport has been characterised in a wide parameter regime on AUG, MAST and TCV progressing the theoretical and experimental understanding crucial for predicting first wall loads in ITER and DEMO. Conditions in the SOL also play a crucial role for ELM stability and access to small ELM regimes.
  •  
4.
  • Meyer, H., et al. (författare)
  • Overview of progress in European medium sized tokamaks towards an integrated plasma-edge/wall solution
  • 2017
  • Ingår i: Nuclear Fusion. - : Institute of Physics Publishing (IOPP). - 0029-5515 .- 1741-4326. ; 57:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Integrating the plasma core performance with an edge and scrape-off layer (SOL) that leads to tolerable heat and particle loads on the wall is a major challenge. The new European medium size tokamak task force (EU-MST) coordinates research on ASDEX Upgrade (AUG), MAST and TCV. This multi-machine approach within EU-MST, covering a wide parameter range, is instrumental to progress in the field, as ITER and DEMO core/pedestal and SOL parameters are not achievable simultaneously in present day devices. A two prong approach is adopted. On the one hand, scenarios with tolerable transient heat and particle loads, including active edge localised mode (ELM) control are developed. On the other hand, divertor solutions including advanced magnetic configurations are studied. Considerable progress has been made on both approaches, in particular in the fields of: ELM control with resonant magnetic perturbations (RMP), small ELM regimes, detachment onset and control, as well as filamentary scrape-off-layer transport. For example full ELM suppression has now been achieved on AUG at low collisionality with n = 2 RMP maintaining good confinement H-H(98,H-y2) approximate to 0.95. Advances have been made with respect to detachment onset and control. Studies in advanced divertor configurations (Snowflake, Super-X and X-point target divertor) shed new light on SOL physics. Cross field filamentary transport has been characterised in a wide parameter regime on AUG, MAST and TCV progressing the theoretical and experimental understanding crucial for predicting first wall loads in ITER and DEMO. Conditions in the SOL also play a crucial role for ELM stability and access to small ELM regimes.
  •  
5.
  • Fenstermacher, M.E., et al. (författare)
  • DIII-D research advancing the physics basis for optimizing the tokamak approach to fusion energy
  • 2022
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 62:4
  • Tidskriftsartikel (refereegranskat)abstract
    • DIII-D physics research addresses critical challenges for the operation of ITER and the next generation of fusion energy devices. This is done through a focus on innovations to provide solutions for high performance long pulse operation, coupled with fundamental plasma physics understanding and model validation, to drive scenario development by integrating high performance core and boundary plasmas. Substantial increases in off-axis current drive efficiency from an innovative top launch system for EC power, and in pressure broadening for Alfven eigenmode control from a co-/counter-I p steerable off-axis neutral beam, all improve the prospects for optimization of future long pulse/steady state high performance tokamak operation. Fundamental studies into the modes that drive the evolution of the pedestal pressure profile and electron vs ion heat flux validate predictive models of pedestal recovery after ELMs. Understanding the physics mechanisms of ELM control and density pumpout by 3D magnetic perturbation fields leads to confident predictions for ITER and future devices. Validated modeling of high-Z shattered pellet injection for disruption mitigation, runaway electron dissipation, and techniques for disruption prediction and avoidance including machine learning, give confidence in handling disruptivity for future devices. For the non-nuclear phase of ITER, two actuators are identified to lower the L-H threshold power in hydrogen plasmas. With this physics understanding and suite of capabilities, a high poloidal beta optimized-core scenario with an internal transport barrier that projects nearly to Q = 10 in ITER at ∼8 MA was coupled to a detached divertor, and a near super H-mode optimized-pedestal scenario with co-I p beam injection was coupled to a radiative divertor. The hybrid core scenario was achieved directly, without the need for anomalous current diffusion, using off-axis current drive actuators. Also, a controller to assess proximity to stability limits and regulate β N in the ITER baseline scenario, based on plasma response to probing 3D fields, was demonstrated. Finally, innovative tokamak operation using a negative triangularity shape showed many attractive features for future pilot plant operation.
  •  
6.
  • Casali, G., et al. (författare)
  • The Gaia-ESO survey : Calibrating a relationship between age and the [C/N] abundance ratio with open clusters
  • 2019
  • Ingår i: Astronomy and Astrophysics. - : EDP SCIENCES S A. - 0004-6361 .- 1432-0746. ; 629
  • Tidskriftsartikel (refereegranskat)abstract
    • Context: In the era of large high-resolution spectroscopic surveys such as Gaia-ESO and APOGEE, high-quality spectra can contribute to our understanding of the Galactic chemical evolution by providing abundances of elements that belong to the different nucleosynthesis channels, and also by providing constraints to one of the most elusive astrophysical quantities: stellar age.Aims: Some abundance ratios, such as [C/N], have been proven to be excellent indicators of stellar ages. We aim at providing an empirical relationship between stellar ages and [C/N] using open star clusters, observed by the Gaia-ESO and APOGEE surveys, as calibrators.Methods: We used stellar parameters and abundances from the Gaia-ESO Survey and APOGEE Survey of the Galactic field and open cluster stars. Ages of star clusters were retrieved from the literature sources and validated using a common set of isochrones. We used the same isochrones to determine for each age and metallicity the surface gravity at which the first dredge-up and red giant branch bump occur. We studied the effect of extra-mixing processes in our sample of giant stars, and we derived the mean [C/N] in evolved stars, including only stars without evidence of extra mixing. By combining the Gaia-ESO and APOGEE samples of open clusters, we derived a linear relationship between [C/N] and (logarithmic) cluster ages.Results: We apply our relationship to selected giant field stars in the Gaia-ESO and APOGEE surveys. We find an age separation between thin-and thick-disc stars and age trends within their populations, with an increasing age towards lower metallicity populations.Conclusions: With this empirical relationship, we are able to provide an age estimate for giant stars in which C and N abundances are measured. For giant stars, the isochrone fitting method is indeed less sensitive than for dwarf stars at the turn-off. Our method can therefore be considered as an additional tool to give an independent estimate of the age of giant stars. The uncertainties in their ages is similar to those obtained using isochrone fitting for dwarf stars.
  •  
7.
  • Baratella, M., et al. (författare)
  • The Gaia-ESO Survey: A new approach to chemically characterising young open cluster : II. Abundances of the neutron-capture elements Cu, Sr, Y, Zr, Ba, La, and Ce
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 653
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Young open clusters (ages of less than 200 Myr) have been observed to exhibit several peculiarities in their chemical compositions. These anomalies include a slightly sub-solar iron content, super-solar abundances of some atomic species (e.g. ionised chromium), and atypical enhancements of [Ba/Fe], with values up to ~0.7 dex. Regarding the behaviour of the other s-process elements like yttrium, zirconium, lanthanum, and cerium, there is general disagreement in the literature: some authors claim that they follow the same trend as barium, while others find solar abundances at all ages. Aims. In this work we expand upon our previous analysis of a sample of five young open clusters (IC 2391, IC 2602, IC 4665, NGC 2516, and NGC 2547) and one star-forming region (NGC 2264), with the aim of determining abundances of different neutron-capture elements, mainly Cu I, Sr I, Sr II, Y II, Zr II, Ba II, La II, and Ce II. For NGC 2264 and NGC 2547 we present the measurements of these elements for the first time. Methods. We analysed high-resolution, high signal-to-noise spectra of 23 solar-type stars observed within the Gaia-ESO survey. After a careful selection, we derived abundances of isolated and clean lines via spectral synthesis computations and in a strictly differential way with respect to the Sun. Results. We find that our clusters have solar [Cu/Fe] within the uncertainties, while we confirm that [Ba/Fe] is super-solar, with values ranging from +0.22 to +0.64 dex. Our analysis also points to a mild enhancement of Y, with [Y/Fe] ratios covering values between 0 and +0.3 dex. For the other s-process elements we find that [X/Fe] ratios are solar at all ages. Conclusions. It is not possible to reconcile the anomalous behaviour of Ba and Y at young ages with standard stellar yields and Galactic chemical evolution model predictions. We explore different possible scenarios related to the behaviour of spectral lines, from the dependence on the different ionisation stages and the sensitivity to the presence of magnetic fields (through the Landé factor) to the first ionisation potential effect. We also investigate the possibility that they may arise from alterations of the structure of the stellar photosphere due to the increased levels of stellar activity that affect the spectral line formation, and consequently the derived abundances. These effects seem to be stronger in stars at ages of less than ∼ 100 Myr. However, we are still unable to explain these enhancements, and the Ba puzzle remains unsolved. With the present study we suggest that other elements, for example Sr, Zr, La, and Ce, might be more reliable tracer of the s-process at young ages, and we strongly encourage further critical observations.
  •  
8.
  • Magrini, L., et al. (författare)
  • Gaia -ESO survey : Lithium abundances in open cluster Red Clump stars
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 655
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. It has recently been suggested that all giant stars with masses below 2 M? suffer an episode of surface lithium enrichment between the tip of the red giant branch (RGB) and the red clump (RC). Aims. We test if the above result can be confirmed in a sample of RC and RGB stars that are members of open clusters. Methods. We discuss Li abundances in six open clusters with ages between 1.5 and 4.9 Gyr (turn-off masses between 1.1 and 1.7 M? ). We compare these observations with the predictions of different models that include rotation-induced mixing, thermohaline instability, mixing induced by the first He flash, and energy losses by neutrino magnetic moment. Results. In six clusters, we find close to 35% of RC stars have Li abundances that are similar or higher than those of upper RGB stars. This can be a sign of fresh Li production. Because of the extra-mixing episode connected to the luminosity bump, the expectation has been for RC stars to have systematically lower surface Li abundances. However, we cannot confirm that this possible Li production is ubiquitous. For about 65% of RC giants, we can only determine upper limits in abundances that could be hiding very low Li content. Conclusions. Our results indicate the possibility that Li is being produced in the RC, at levels that would not typically permit the classification of these the stars as Li rich. The determination of their carbon isotopic ratio would help to confirm that the RC giants have suffered extra mixing followed by subsequent Li enrichment. The Li abundances of the RC stars can be qualitatively explained by the models including an additional mixing episode close to the He flash.
  •  
9.
  • Magrini, L., et al. (författare)
  • The Gaia -ESO survey: Mixing processes in low-mass stars traced by lithium abundance in cluster and field stars
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 651
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. We aim to constrain the mixing processes in low-mass stars by investigating the behaviour of the Li surface abundance after the main sequence. We take advantage of the data from the sixth internal data release of Gaia-ESO, IDR6, and from the Gaia Early Data Release 3, EDR3s. Methods. We selected a sample of main-sequence, sub-giant, and giant stars in which the Li abundance is measured by the Gaia-ESO survey. These stars belong to 57 open clusters with ages from 130 Myr to about 7 Gyr and to Milky Way fields, covering a range in [Fe/H] between -1.0and +0.5 dex, with few stars between -1.0 and -2.5dex. We studied the behaviour of the Li abundances as a function of stellar parameters. We inferred the masses of giant stars in clusters from the main-sequence turn-off masses, and for field stars through comparison with stellar evolution models using a maximum likelihood technique. We compared the observed Li behaviour in field giant stars and in giant stars belonging to individual clusters with the predictions of a set of classical models and of models with mixing induced by rotation and thermohaline instability. Results. The comparison with stellar evolution models confirms that classical models cannot reproduce the observed lithium abundances in the metallicity and mass regimes covered by the data. The models that include the effects of both rotation-induced mixing and thermohaline instability account for the Li abundance trends observed in our sample in all metallicity and mass ranges. The differences between the results of the classical models and of the rotation models largely differ (up to 2 dex), making lithium the best element with which to constrain stellar mixing processes in low-mass stars. We discuss the nature of a sample of Li-rich stars. Conclusions. We demonstrate that the evolution of the surface abundance of Li in giant stars is a powerful tool for constraining theoretical stellar evolution models, allowing us to distinguish the effect of different mixing processes. For stars with well-determined masses, we find a better agreement of observed surface abundances and models with rotation-induced and thermohaline mixing. Rotation effects dominate during the main sequence and the first phases of the post-main-sequence evolution, and the thermohaline induced mixing after the bump in the luminosity function.
  •  
10.
  • Spina, L., et al. (författare)
  • The Gaia -ESO Survey : Chemical tagging in the thin disk: Open clusters blindly recovered in the elemental abundance space
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 668
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The chemical makeup of a star provides the fossil information of the environment where it formed. Under this premise, it should be possible to use chemical abundances to tag stars that formed within the same stellar association. This idea - known as chemical tagging - has not produced the expected results, especially within the thin disk where open stellar clusters have chemical patterns that are difficult to disentangle. Aims. The ultimate goal of this study is to probe the feasibility of chemical tagging within the thin disk population using high-quality data from a controlled sample of stars. We also aim at improving the existing techniques of chemical tagging and giving some kind of guidance on different strategies of clustering analysis in the elemental abundance space. Methods. Here we develop the first blind search of open clusters'members through clustering analysis in the elemental abundance space using the OPTICS algorithm applied to data from the Gaia-ESO survey. First, we evaluate different strategies of analysis (e.g., choice of the algorithm, data preprocessing techniques, metric, space of data clustering), determining which ones are more performing. Second, we apply these methods to a data set including both field stars and open clusters attempting a blind recover of as many open clusters as possible. Results. We show how specific strategies of data analysis can improve the final results. Specifically, we demonstrate that open clusters can be more efficaciously recovered with the Manhattan metric and on a space whose dimensions are carefully selected. Using these (and other) prescriptions we are able to recover open clusters hidden in our data set and find new members of these stellar associations (i.e., escapers, binaries). Conclusions. Our results indicate that there are chances of recovering open clusters'members via clustering analysis in the elemental abundance space, albeit in a data set that has a very high fraction of cluster members compared to an average field star sample. Presumably, the performances of chemical tagging will further increase with higher quality data and more sophisticated clustering algorithms, which will likely became available in the near future.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 28

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy