SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Casiraghi C) "

Sökning: WFRF:(Casiraghi C)

  • Resultat 1-10 av 14
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Glasbey, JC, et al. (författare)
  • 2021
  • swepub:Mat__t
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  • Acharya, B. S., et al. (författare)
  • Introducing the CTA concept
  • 2013
  • Ingår i: Astroparticle physics. - : Elsevier BV. - 0927-6505 .- 1873-2852. ; 43, s. 3-18
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • The Cherenkov Telescope Array (CTA) is a new observatory for very high-energy (VHE) gamma rays. CTA has ambitions science goals, for which it is necessary to achieve full-sky coverage, to improve the sensitivity by about an order of magnitude, to span about four decades of energy, from a few tens of GeV to above 100 TeV with enhanced angular and energy resolutions over existing VHE gamma-ray observatories. An international collaboration has formed with more than 1000 members from 27 countries in Europe, Asia, Africa and North and South America. In 2010 the CTA Consortium completed a Design Study and started a three-year Preparatory Phase which leads to production readiness of CTA in 2014. In this paper we introduce the science goals and the concept of CTA, and provide an overview of the project. (C) 2013 Elsevier B.V. All rights reserved.
  •  
7.
  • Actis, M., et al. (författare)
  • Design concepts for the Cherenkov Telescope Array CTA : an advanced facility for ground-based high-energy gamma-ray astronomy
  • 2011
  • Ingår i: Experimental astronomy. - : Springer. - 0922-6435 .- 1572-9508. ; 32:3, s. 193-316
  • Tidskriftsartikel (refereegranskat)abstract
    • Ground-based gamma-ray astronomy has had a major breakthrough with the impressive results obtained using systems of imaging atmospheric Cherenkov telescopes. Ground-based gamma-ray astronomy has a huge potential in astrophysics, particle physics and cosmology. CTA is an international initiative to build the next generation instrument, with a factor of 5-10 improvement in sensitivity in the 100 GeV-10 TeV range and the extension to energies well below 100 GeV and above 100 TeV. CTA will consist of two arrays (one in the north, one in the south) for full sky coverage and will be operated as open observatory. The design of CTA is based on currently available technology. This document reports on the status and presents the major design concepts of CTA.
  •  
8.
  •  
9.
  • Balbinot, L., et al. (författare)
  • Multi-code estimation of DTT edge transport parameters
  • 2023
  • Ingår i: Nuclear Materials and Energy. - : Elsevier BV. - 2352-1791. ; 34
  • Tidskriftsartikel (refereegranskat)abstract
    • The main goal of the Divertor Tokamak Test facility (DTT) is to operate with a high value of power-exhaust-relevant parameter Psoz/R in plasma scenarios similar to those foreseen for the Demonstration Fusion Power Plant (DEMO) in terms of low collisionality and neutral opacity. For these unique characteristics, accurate modelling of the principal scenario is necessary for machine designing. In edge numerical codes, cross-field transport profiles have a high impact on modelling results. This work aims at providing a coherent set of transport parameters for DTT full-power (FP) single-null (SN) scenario edge modelling. To evaluate such parameters for DTT, a transport analysis on the current machine has been performed using SOLEDGE2D-EIRENE and SOLPS-ITER. The transport parameters to be used in the simulations of the DTT single-null scenario were selected using two complementary methods. The first is the modelling of JET and Alcator C-Mod (C-Mod) with SOLEDGE2D-EIRENE and SOLPS-ITER, validating transport parameters by comparing modelling results to experimental data from pulses which are considered DTT-relevant. JET pulses were selected with the highest auxiliary input power (from 29 to 33 MW), plasma current and toroidal field to better match DTT parameters; nitrogen and neon seeded pulses were selected to check possible seeding material dependencies. The considered C-Mod pulse better matches DTT plasma density and neutral opacity. Transport parameters are then scaled to DTT according to scaling laws. The second method derives the transport parameters by tuning their values inside the DTT separatrix to reproduce the pedestal profiles predicted by the EPED model via the Europed code and applied in DTT. The derived set of DTT transport parameters is consistent with the results obtained by modelling present machines, reproduces the expected heat flux decay length in detached conditions and, inside the separatrix, reproduces the predicted pedestal using transport parameters which are coherent with what is predicted by the quasi-linear turbulent model QuaLiKiz.
  •  
10.
  • Wolever, Thomas M S, et al. (författare)
  • Measuring the glycemic index of foods: interlaboratory study.
  • 2008
  • Ingår i: The American journal of clinical nutrition. - 0002-9165 .- 1938-3207. ; 87:1
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Many laboratories offer glycemic index (GI) services. OBJECTIVE: We assessed the performance of the method used to measure GI. DESIGN: The GI of cheese-puffs and fruit-leather (centrally provided) was measured in 28 laboratories (n=311 subjects) by using the FAO/WHO method. The laboratories reported the results of their calculations and sent the raw data for recalculation centrally. RESULTS: Values for the incremental area under the curve (AUC) reported by 54% of the laboratories differed from central calculations. Because of this and other differences in data analysis, 19% of reported food GI values differed by >5 units from those calculated centrally. GI values in individual subjects were unrelated to age, sex, ethnicity, body mass index, or AUC but were negatively related to within-individual variation (P=0.033) expressed as the CV of the AUC for repeated reference food tests (refCV). The between-laboratory GI values (mean+/-SD) for cheese-puffs and fruit-leather were 74.3+/-10.5 and 33.2+/-7.2, respectively. The mean laboratory GI was related to refCV (P=0.003) and the type of restrictions on alcohol consumption before the test (P=0.006, r2=0.509 for model). The within-laboratory SD of GI was related to refCV (P<0.001), the glucose analysis method (P=0.010), whether glucose measures were duplicated (P=0.008), and restrictions on dinner the night before (P=0.013, r2=0.810 for model). CONCLUSIONS: The between-laboratory SD of the GI values is approximately 9. Standardized data analysis and low within-subject variation (refCV<30%) are required for accuracy. The results suggest that common misconceptions exist about which factors do and do not need to be controlled to improve precision. Controlled studies and cost-benefit analyses are needed to optimize GI methodology. The trial was registered at clinicaltrials.gov as NCT00260858.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 14

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy