SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Castoldi Andrea) "

Sökning: WFRF:(Castoldi Andrea)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Lojewski, Tobias, et al. (författare)
  • The interplay of local electron correlations and ultrafast spin dynamics in fcc Ni
  • 2023
  • Ingår i: Materials Research Letters. - : Taylor & Francis. - 2166-3831. ; 11:8, s. 655-661
  • Tidskriftsartikel (refereegranskat)abstract
    • The complex electronic structure of metallic ferromagnets is determined by a balance between exchange interaction, electron hopping leading to band formation, and local Coulomb repulsion. By combining high energy and temporal resolution in femtosecond time-resolved X-ray absorption spectroscopy with ab initio time-dependent density functional theory we analyze the electronic structure in fcc Ni on the time scale of these interactions in a pump-probe experiment. We distinguish transient broadening and energy shifts in the absorption spectra, which we demonstrate to be captured by electron repopulation respectively correlation-induced modifications of the electronic structure, requiring to take the local Coulomb interaction into account.
  •  
2.
  • Giorgetti, A., et al. (författare)
  • Segment routing for effective recovery and multi-domain traffic engineering
  • 2017
  • Ingår i: Journal of Optical Communications and Networking. - : Institute of Electrical and Electronics Engineers (IEEE). - 1943-0620 .- 1943-0639. ; 9:2, s. A223-A232
  • Tidskriftsartikel (refereegranskat)abstract
    • Segment routing is an emerging traffic engineering technique relying on Multi-protocol Label-Switched (MPLS) label stacking to steer traffic using the source-routing paradigm. Traffic flows are enforced through a given path by applying a specifically designed stack of labels (i.e., the segment list). Each packet is then forwarded along the shortest path toward the network element represented by the top label. Unlike traditional MPLS networks, segment routing maintains a per-flow state only at the ingress node; no signaling protocol is required to establish new flows or change the routing of active flows. Thus, control plane scalability is greatly improved. Several segment routing use cases have recently been proposed. As an example, it can be effectively used to dynamically steer traffic flows on paths characterized by low latency values. However, this may suffer from some potential issues. Indeed, deployed MPLS equipment typically supports a limited number of stacked labels. Therefore, it is important to define the proper procedures to minimize the required segment list depth. This work is focused on two relevant segment routing use cases: dynamic traffic recovery and traffic engineering in multi-domain networks. Indeed, in both use cases, the utilization of segment routing can significantly simplify the network operation with respect to traditional Internet Protocol (IP)/MPLS procedures. Thus, two original procedures based on segment routing are proposed for the aforementioned use cases. Both procedures are evaluated including a simulative analysis of the segment list depth. Moreover, an experimental demonstration is performed in a multi-layer test bed exploiting a software-defined-networking-based implementation of segment routing.
  •  
3.
  • Paolucci, F., et al. (författare)
  • Interoperable multi-domain delay-aware provisioning using Segment Routing monitoring and BGP-LS advertisement
  • 2016
  • Ingår i: ECOC 2016 42th European Conference on Optical Communication Proceedings, September 18 - 22, 2016, Düsseldorf, Germany. - : Institute of Electrical and Electronics Engineers (IEEE). - 9783800742745 ; , s. 190-192
  • Konferensbidrag (refereegranskat)abstract
    • This paper demonstrates a multi-domain SDN orchestrator using delay information to provision network services using BGP-LS and a novel monitoring system enabled by Segment Routing. Moreover, it is the first implementation and interoperability of the BGP-LS extensions for TE metrics.
  •  
4.
  • Turenne, Diego, et al. (författare)
  • Nonequilibrium sub–10 nm spin-wave soliton formation in FePt nanoparticles
  • 2022
  • Ingår i: Science Advances. - : American Association for the Advancement of Science (AAAS). - 2375-2548. ; 8:13
  • Tidskriftsartikel (refereegranskat)abstract
    • Magnetic nanoparticles such as FePt in the L10 phase are the bedrock of our current data storage technology. As the grains become smaller to keep up with technological demands, the superparamagnetic limit calls for materials with higher magnetocrystalline anisotropy. This, in turn, reduces the magnetic exchange length to just a few nanometers, enabling magnetic structures to be induced within the nanoparticles. Here, we describe the existence of spin-wave solitons, dynamic localized bound states of spin-wave excitations, in FePt nanoparticles. We show with time-resolved x-ray diffraction and micromagnetic modeling that spin-wave solitons of sub–10 nm sizes form out of the demagnetized state following femtosecond laser excitation. The measured soliton spin precession frequency of 0.1 THz positions this system as a platform to develop novel miniature devices. 
  •  
5.
  • Valcarenghi, L., et al. (författare)
  • SDN-controlled energy-efficient mobile fronthaul : An experimental evaluation in federated testbeds
  • 2016
  • Ingår i: EUCNC 2016 - European Conference on Networks and Communications. - : Institute of Electrical and Electronics Engineers (IEEE). - 9781509028931 ; , s. 298-301
  • Konferensbidrag (refereegranskat)abstract
    • When evolved NodeB (eNB) flexible functional split is implemented in Cloud-Radio Access Network (Cloud-RAN) 5G systems, fronthaul connectivity between the virtualized functions must be always guaranteed. This study proposes the utilization of Software Defined Networking (SDN) to control mobile fronthaul. In particular, this study investigates the ability of the SDN-based control of reconfiguring the fronthaul to maintain virtualized network function connectivity when cell and optical access turn into sleep mode (off mode) for energy efficiency purposes. The experiments in two federated testbeds show that, upon cell and optical access turning on and off, the fronthaul reconfiguration time is limited to few tens of milliseconds.
  •  
6.
  • Zhou Hagström, Nanna, 1993-, et al. (författare)
  • Megahertz-rate Ultrafast X-ray Scattering and Holographic Imaging at the European XFEL
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • The advent of X-ray free-electron lasers (XFELs) has revolutionized fundamental science, from atomic to condensed matter physics, from chemistry to biology, giving researchers access to X-rays with unprecedented brightness, coherence, and pulse duration. All XFEL facilities built until recently provided X-ray pulses at a relatively low repetition rate, with limited data statistics. Here, we present the results from the first megahertz repetition rate X-ray scattering experiments at the Spectroscopy and Coherent Scattering (SCS) instrument of the European XFEL. We illustrate the experimental capabilities that the SCS instrument offers, resulting from the operation at MHz repetition rates and the availability of the novel DSSC 2D imaging detector. Time-resolved magnetic X-ray scattering and holographic imaging experiments in solid state samples were chosen as representative examples, providing an ideal test-bed for operation at megahertz rates. Nevertheless, our results are relevant and applicable to any other non-destructive XFEL experiments in the soft X-ray range. 
  •  
7.
  • Zhou Hagström, Nanna, 1993-, et al. (författare)
  • Megahertz-rate ultrafast X-ray scattering and holographic imaging at the European XFEL
  • 2022
  • Ingår i: Journal of Synchrotron Radiation. - : International Union of Crystallography (IUCr). - 0909-0495 .- 1600-5775. ; 29, s. 1454-1464
  • Tidskriftsartikel (refereegranskat)abstract
    • The advent of X-ray free-electron lasers (XFELs) has revolutionized fundamental science, from atomic to condensed matter physics, from chemistry to biology, giving researchers access to X-rays with unprecedented brightness, coherence and pulse duration. All XFEL facilities built until recently provided X-ray pulses at a relatively low repetition rate, with limited data statistics. Here, results from the first megahertz-repetition-rate X-ray scattering experiments at the Spectroscopy and Coherent Scattering (SCS) instrument of the European XFEL are presented. The experimental capabilities that the SCS instrument offers, resulting from the operation at megahertz repetition rates and the availability of the novel DSSC 2D imaging detector, are illustrated. Time-resolved magnetic X-ray scattering and holographic imaging experiments in solid state samples were chosen as representative, providing an ideal test-bed for operation at megahertz rates. Our results are relevant and applicable to any other non-destructive XFEL experiments in the soft X-ray range.
  •  
8.
  • 2017
  • swepub:Mat__t
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy